全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

若尔盖高原花湖泥炭沉积及其对气候变化的响应
Peat sedimentation and its response to climate change of Huahu peatland on Zoige plateau

DOI: 10.7523/j.issn.2095-6134.2017.04.010

Keywords: 若尔盖高原,花湖,210Pb测年,泥炭沉积,碳积累速率
Zoige plateau
,Huahu lake,210Pb dating,peat sedimentation,RERCA

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 青藏高原东北缘若尔盖高原泥炭地一直是第四纪气候变化和地质活动的研究热点。通过210Pb放射性测年技术的恒定补给速率模式建立若尔盖高原花湖泥炭地30 cm泥炭剖面的高精度年代框架(1824—2011年),得出该年代序列下泥炭剖面的厚度沉积速率为0.16 cm·a-1,加权平均沉积通量为0.082 g·cm-2·a-1。通过泥炭的干容重和有机碳含量,计算出泥炭剖面的有机碳沉积速率,即近现代碳积累速率为86.12 g·m-2·a-1。结合气象台站观测数据、卫星观测模拟数据以及气候代用指标重建的气候数据,探讨年平均气温和年平均降水对该泥炭地碳积累速率的影响,得出花湖泥炭地对近现代气候变化的响应主导因子为降水。为进一步研究若尔盖高原泥炭地的泥炭发育和碳积累情况提供参考依据。

References

[1]  柴岫. 泥炭地学[M]. 北京:地质出版社, 1990.
[2]  Jackson S T. Peatlands: paleoenvironments and carbon dynamics[M]. Bern, Switzerland: PAGES International Project Office, 2010.
[3]  Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming [J]. Ecological Applications, 1991, 1: 182-195.
[4]  Botch M S, Kobak K I, Vinson T S, et al. Carbon pools and accumulation in peatlands of the former Soviet Union [J]. Global Biogeochemical Cycles, 1995, 9: 37-46.
[5]  Tolonen K, Turunen J. Accumulation rates of carbon in mires in Finland and implications for climate change [J]. Holocene, 1996, 6 (2): 171-178.
[6]  Turunen J, Tahvanainen T, Tolonen K, et al. Carbon accumulation in West Siberian mires, Russia <em>Sphagnum</em> peatland distribution in North America and Eurasia during the past 21 000 years[J]. Global Biogeochemical Cycles, 2001, 15 (2): 285-296.
[7]  Yu Z, Loisel J, Brosseau D P, et al. Global peatland dynamics since the Last Glacial Maximum[J]. Geophysical Research Letters, 2010, 37 (13): 1-5.
[8]  鲍锟山. 东北山地泥炭沼泽沉积及其记录的近200年环境变化[D]. 长春: 中国科学院东北地理与农业生态研究所, 2012.
[9]  Goldberg E D. Geochronology with <sup>210</sup>Pb[J]. Radioactive Dating, 1963: 121-131.
[10]  鲍锟山, 赵红梅, 于晓菲, 等. 大气环境变化的泥炭地质档案[J]. 地质论评, 2011, 57 (2): 234-242.
[11]  Appleby P G, Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported <sup>210</sup>Pb to the sediment [J]. Catena, 1978, 5 (1): 1-8.
[12]  Appleby P G, Oldfield F, Thompson R, et al. <sup>210</sup>Pb dating of annually laminated lake sediments from Finland [J]. Nature, 1979, 280: 53-55.
[13]  Appleby P G, Shotyk W, Fankhauser A. Lead-210 age dating of three peat cores in the Jura Mountains, Switzerland[J]. Water Air & Soil Pollution, 1997, 100(3/4): 223-231.
[14]  Bao K S, Xia W L, Lu X, et al. Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from Pb-210 and Cs-137 dating [J]. Journal of Environmental Radioactivity, 2010, 101 (9): 773-779.
[15]  Liu S W, Chu G Q, Jiang Y D. Radionuclide dating (<sup>210</sup>Pb, <sup>137</sup>Cs) of recent inter-dune saline lake sediment cores in the Badain Jaran Desert, Inner Mongolia, Northwest China[J]. Acta Geologica Sinica (English Edition), 2014, 88 (s1): 18-19.
[16]  Krishnaswamy S, Lal D, Martin J M, et al. Geochronology of lake sediments[J]. Earth and Planetary Science Letters, 1971, 11 (1/5): 407-414.
[17]  张敬, 牟德海, 杜金洲, 等. 过剩 <sup>210</sup>Pb 年代学的多种计算模式的比较研究[J]. 海洋环境科学, 2008, 27 (4): 370-374.
[18]  Appleby P G. Chronostratigraphic techniques in recent sediments[M]//Tracking environmental change using lake sediments. Springer Netherlands, 2002: 171-203.
[19]  Krishnaswami S, Seidemann D E. Comparative study of <sup>222</sup>Rn, <sup>40</sup>Ar, <sup>39</sup>Ar and <sup>37</sup>Ar leakage from rocks and minerals: implications for the role of nanopores in gas transport through natural silicates[J]. Geochimica et Cosmochimica Acta, 1988, 52(3): 655-658.
[20]  Tolonen K, Turunen J. Accumulation rates of carbon in mires in Finland and implications for climate change[J]. The Holocene, 1996, 6 (2): 171-178.
[21]  Turunen J, Tomppo E, Tolonen K, et al. Estimating carbon accumulation rates of undrained mires in Finland-application to boreal and subarctic regions[J]. The Holocene, 2002, 12 (1): 69-80.
[22]  Wang M, Chen H, Wu N, et al. Carbon dynamics of peatlands in China during the Holocene[J]. Quaternary Science Review, 2014, 99: 34-41.
[23]  周浩达, 胡建芳, 明荔莉, 等. 150年来若尔盖泥炭沉积支链四醚膜类脂及古环境重建[J], 科学通报, 2011 (21): 1 741-1 748.
[24]  Turunen J, Roulet N T, Moore T R, et al. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada[J]. Global Biogeochemical Cycles, 2004, 18(3):1-12.
[25]  Delarue F. Persistent high temperature and low precipitation reduce peat carbon accumulation[J]. Global Change Biology, 2016, 22 (10): 3 253-3 254.
[26]  Borren W, Bleuten W, Lapshina E D. Holocene peat and carbon accumulation rates in the southern taiga of western Siberia[J]. Quaternary Research, 2004, 61 (1): 42-51.
[27]  Yu Z, Campbell I D, Campbell C, et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales[J]. The Holocene, 2003, 13 (6): 801-808.
[28]  Belyea L R, Malmer N. Carbon sequestration in peatland: patterns and mechanisms of response to climate change [J]. Global Change Biology, 2004, 10 (7): 1 043-1 052.
[29]  刘汉向. 哈泥泥炭地近现代有机碳沉积速率空间分异的植物物源输入机制研究[D]. 长春: 东北师范大学, 2015.
[30]  Bao K S, Zhao H M, Xing W, et al. Carbon accumulation in temperate wetlands of Sanjiang Plain, Northeast China[J]. Soil Science Society of America Journal, 2011, 75 (6): 2 386-2 397.
[31]  Bao K S, Yu X F, Jia L, et al. Recent carbon accumulation in Changbai Mountain peatlands, northeast China[J]. Mountain Research and Development, 2010, 30 (1): 33-41.
[32]  蔡诚, 洪冰, 朱詠煊, 等. 全新世哈尼泥炭地碳积累速率及影响因素[J]. 地球与环境, 2013, 41(6): 597-604.
[33]  张文菊, 吴金水, 肖和艾, 等. 三江平原典型湿地剖面有机碳分布特征与积累现状[J]. 地球科学进展, 2004, 19 (4): 558-563.
[34]  Gao J Q, Ouyang H, Wang G, et al. Recent peat accumulation rates in Zoige peatlands, Eastern Tibet, inferred by <sup>210</sup>Pb and <sup>137</sup>Cs radiometric techniques[J]. Procedia Environmental Sciences, 2010, 2: 1 927-1 933.
[35]  蔡诚, 洪冰, 朱詠煊, 等. 全新世红原泥炭碳积累速率及其影响因素研究[J]. 矿物岩石地球化学通报, 2014 (3): 309-316.
[36]  罗来兴, 杨逸畴. 川西滇北地貌形成的探讨[J]. 地理集刊,1963, 5:1-57
[37]  杨福明. 若尔盖高原泥炭沼泽及其评价[J]. 资源开发与市场, 1988, 4 (2): 24-30.
[38]  穆桂春. 若尔盖高原的自然概况与地貌发育[J]. 西南师范学院学报(自然科学版), 1982(4): 42-46.
[39]  孙广友. 论若尔盖高原泥炭赋存规律成矿类型及资源储量[J]. 自然资源学报, 1992, 7 (4): 334-346.
[40]  柴岫, 金树仁. 若尔盖高原沼泽的类型及其发生与发展[J]. 地理学报, 1963, 29 (3): 219-240.
[41]  孙广友, 张文芬, 张家驹, 等. 若尔盖高原沼泽生态环境及其合理开发的研究[J]. 自然资源学报, 1987, 2 (4): 359-368.
[42]  Givelet N, Le Roux G, Cheburkin A, et al. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses[J]. Journal of Environmental Monitoring, 2004, 6 (5): 481-492.
[43]  Geiss J, Goldberg. Earth science and meteoritics[M]. North-Holland Publ Co, Amsterdam, Holland,1963.
[44]  万国江. 现代沉积的<sup>210</sup>Pb计年[J]. 第四纪研究, 1997, 17 (3): 230-239.
[45]  王元峰, 王辉, 马维伟, 等. 尕海湿地泥炭土土壤理化性质[J]. 水土保持学报, 2012,26(3): 118-122.
[46]  赵红艳, 冷雪天, 王升忠. 长白山地泥炭分布、沉积速率与全新世气候变化[J]. 山地学报, 2002, 20 (5): 513-518.
[47]  Chen H, Yang G, Peng C H, et al. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the Holocene and their future fate [J]. Quaternary Science Reviews, 2014, 95(7): 151-158.
[48]  田玉强, 欧阳华, 徐兴良, 等. 青藏高原土壤有机碳储量与密度分布[J]. 土壤学报, 2008, 45 (5): 933-942.
[49]  周文昌, 崔丽娟, 王义飞, 等. 若尔盖高原泥炭地生态系统碳储量[J]. 生态学杂志, 2016, 35(8):1 981-1 987.
[50]  李红梅. 若尔盖湿地景观格局演变与土壤有机碳储量研究[D]. 雅安: 四川农业大学, 2009.
[51]  孙广友, 张文芬. 若尔盖高原黄河古河道及其古地理意义[J]. 地理科学, 1987, 7 (3): 266-272.
[52]  Korhola A, Tolonen K, Turunen J, et al. Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating[J]. Radiocarbon, 1995, 37 (2): 575-584.
[53]  Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological applications, 2000, 10(2): 423-436.
[54]  Appleby P G. Three decades of dating recent sediments by fallout radionuclides: a review[J]. The Holocene, 2008, 18 (1): 83-93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133