|
- 2017
气态进料直接甲醇燃料电池的二维数值模拟
|
Abstract:
摘要 基于多相流理论,建立被动式气态甲醇进料碱性阴离子交换膜直接甲醇燃料电池的二维两相非等温模型,研究电池内部的质量传输和电化学现象。在模型中,液态甲醇蒸发形成蒸汽,通过由Nafion膜与疏水的多孔介质复合而成的材料进入电池。模型考虑气体传输层(VTL)和微孔层(MPL),在VTL的两侧对称地开两个微孔,便于CO2的外排。讨论不同CO2开口大小对电池性能的影响和MPL的疏水性对电池内部水分布以及性能的影响。
[1] | Xu C, Faghri A, Li X L. Improving the water management and cell performance for the passive vapor-feed DMFC fed with neat methanol[J]. International Journal of Hydrogen Energy, 2011, 14(36):8468-8477. |
[2] | Yang W W, Zhao T S, Xu C. Three-dimensional two-phase mass transport model for direct methanol fuel cells[J]. Electrochimica Acta, 2007, 2(53):853-862. |
[3] | Shaffer C E., Wang C Y. Role of hydrophobic anode MPL in controlling water crossover in DMFC[J]. Electrochimica Acta, 2009, 24(54):5761-5769. |
[4] | Liu F Q, Wang C Y. Water and methanol crossover in direct methanol fuel cells:Effect of anode diffusion media[J]. Electrochimica Acta, 2008, 17(53):5517-5522. |
[5] | Wu H J, Yuan T, Huang Q H, et al. Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells[J]. Electrochimica Acta, 2014, 141:1-5. |
[6] | Yuan T, Yang J, Wang Y L, et al. Anodic diffusion layer with graphene-carbon nanotubes composite material for passive direct methanol fuel cell[J]. Electrochimica Acta, 2014, 147:265-270. |
[7] | Halim F A, Hasran U A, Masdar M S, et al. Overview on vapor feed direct methanol fuel cell[J]. APCBEE Procedia, 2012, 3:40-45. |
[8] | Mallick R K, Thombre S B, Shrivastava N K. Vapor feed direct methanol fuel cells (DMFCs):a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56:51-74. |
[9] | Xu C, Faghri A. Mass transport analysis of a passive vapor-feed direct methanol fuel cell[J]. Journal of Power Sources, 2010, 20(195):7011-7024. |
[10] | Yuan W, Zhou B, Deng J, et al. Overview on the developments of vapor-feed direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2014, 12(39):6689-6704. |
[11] | Deng H, Jiao D K, Zu M, et al. Modeling of passive alkaline membrane direct methanol fuel cell[J]. Electrochimica Acta, 2015, 154:430-446. |
[12] | Lee K, Ferekh S, Jo A, et al. Effects of hybrid catalyst layer design on methanol and water transport in a direct methanol fuel cell[J]. Electrochimica Acta, 2015, 177:209-216. |
[13] | Yuan W, Zhang Z C, Hu J Y, et al. Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation[J]. Applied Energy, 2014, 136:143-149. |
[14] | Bahrami H, Faghri A. Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol[J]. International Journal of Hydrogen Energy, 2012, 10(37):8641-8658. |
[15] | Zhang Z C, Yuan W, Wang A, et al. Moisturized anode and water management in a passive vapor-feed direct methanol fuel cell operated with neat methanol[J]. Journal of Power Sources, 2015, 297:33-44. |
[16] | Fukunaga H, Ishida T, Teranishi N, et al. Impedance of vapor feed direct methanol fuel cells:polarization dependence of elementary processes at the anode[J]. Electrochimica Acta, 2004, 13(49):2123-2129. |
[17] | Guo Z, Faghri A. Vapor feed direct methanol fuel cells with passive thermal-fluids management system[J]. Journal of Power Sources, 2007, 2(167):378-390. |