全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

微小颗粒在多孔介质中运移的实验研究
Experimental study of migration of micro particles in porous media

DOI: 10.7523/j.issn.2095-6134.2017.02.020

Keywords: 多孔介质,微小颗粒,沉积,界面
porous media
,micro particle,deposition,interface

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 以地热砂岩回灌中存在的物理堵塞问题为研究背景,开展微小颗粒在含水多孔介质内运移特性的渗流实验研究。通过圆管中填充玻璃珠构造多孔介质实验段,搭建含微小颗粒流体在多孔介质圆管内的渗流特性实验台。对比研究颗粒直径dp分别为12.96和22.81 μm、多孔介质平均粒径Dp分别为408.9和659.2 μm、含颗粒流体质量浓度在0.3~2.0 g/L范围下,颗粒在多孔介质界面处及内部各段沉积的影响规律。实验结果表明:当dp=12.96 μm时,颗粒在多孔介质内部的沉积量远大于在界面处的沉积量;当dp=22.81 μm,流体浓度C<0.3 g/L时二者相差不大;C>0.5 g/L时颗粒在介质内部的沉积量小于界面处沉积量,且二者差值随着流体浓度的增大而增大,说明此时"筛滤"作用产生。研究结果可为下一步的数值模拟提供实验验证。

References

[1]  Okubo T, Matsumoto J. Biological clogging of sand and changes of organic constituents during artificial recharge[J]. Water Research, 1983, 17(7):813-821.
[2]  Boccardo G, Marchisio D L, Sethi R. Microscale simulation of particle deposition in porous media[J]. Journal of Colloid & Interface Science, 2014, 417:227-237.
[3]  李琪. 悬浮微小颗粒在饱和多孔介质中运移特性的理论及实验研究[D]. 天津:天津大学,2014.
[4]  Nearing M A, Foster G R, Lane L J, et al. A process-based soil erosion model for USDA-water erosion prediction project technology[J]. Trans ASAE, 1989, 32(5):1587-1593.
[5]  Khilar K C, Fogler H S, Ahluwalia J S. Sandstone water sensitivity:existence of a critical rate of salinity decrease for particle capture[J]. Chemical engineering science, 1983, 38(5):789-800.
[6]  Pandya V B, Bhuniya S, Khilar K C. Existence of a critical particle concentration in plugging of a packed bed[J]. AICHE Journal, 1998, 44(4):978-981.
[7]  Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells[J]. Water Research, 2000, 34(7):2110-2118.
[8]  De Jonge L W, Kj?rgaard C, Moldrup P. Colloids and colloid-facilitated transport of contaminants in soils[J]. Vadose Zone Journal, 2004, 3(2):321-325.
[9]  Moghadasi J, Müller S H, Jamialahmadi M, et al. Theoretical and experimental study of particle movement and deposition in porous media during water injection[J]. Journal of petroleum science and engineering, 2004, 43(3):163-181.
[10]  Chellam S, Cogan N G. Colloidal and bacterial fouling during constant flux microfiltration:Comparison of classical blocking laws with a unified model combining pore blocking and EPS secretion[J]. Journal of Membrane Science, 2011, 382(1):148-157.
[11]  Bates J K, Bradley J P, Teetsov A, et al. Colloid formation during waste form reaction:Implications for nuclear waste disposal[J]. Science, 1992, 256(5057):649-651.
[12]  Zamani A, Maini B. Flow of dispersed particles through porous media:deep bed filtration[J]. Journal of Petroleum Science and Engineering, 2009, 69(1):71-88.
[13]  Bennion D B, Thomas F B, Bennion D W, et al. Mechanisms of formation damage and permeability impairment associated with the drilling, completion and production of low API gravity oil reservoirs[J]. SPE, 1995, 30:320.
[14]  Kanti Sen T, Khilar K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2):71-96.
[15]  Ives K J. Rapid filtration[J]. Water Research, 1970, 4(3):201-223.
[16]  Sen T K, Mahajan S P, Khilar K C. Colloid-associated contaminant transport in porous media:1. Experimental studies[J]. AICHE Journal, 2002, 48(10):2366-2374.
[17]  刘泉声,崔先泽,张程远. 多孔介质中悬浮颗粒迁移-沉积特性研究进展[J].岩石力学与工程学报,2014, 34(12):2410-2427.
[18]  Strutz T J, Hornbruch G, Dahmke A, et al. Effect of injection velocity and particle concentration on transport of nanoscale zero valent iron and hydraulic conductivity in saturated porous media[J]. Contaminant Hydrology, 2016,191:54-65.
[19]  McDowell Boyer L M, Hunt J R, Sitar N. Particle transport through porous media[J]. Water Resources Research, 1986, 22(13):1901-1921.
[20]  Bradford S A, Bettahar M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2006, 82(1):99-117.
[21]  Xu S, Gao B, Saiers J E. Straining of colloidal particles in saturated porous media[J]. Water Resources Research, 2006, 42(12):731-741.
[22]  Asgharian B, Price O T, Hofmann W. Prediction of particle deposition in the human lung using realistic models of lung ventilation[J]. Journal of Aerosol Science, 2006, 37(10):1209-1221.
[23]  林黎,赵苏民,李丹,等. 深层地热水开采与地面沉降的关系研究[J]. 水文地质工程地质, 2006, 33(3):34-37.
[24]  路莹. 北京平谷地区雨洪水地下回灌堵塞机理分析与模拟研究[D]. 长春:吉林大学, 2009.
[25]  Frey J M, Schmitz P, Dufreche J, et al. Particle deposition in porous media:analysis of hydrodynamic and weak inertial effects[J]. Transport in Porous Media, 1999, 37(1):25-54.
[26]  Oort E, Velzen J F G, Leerlooljerr K. Impairment by suspended solids invasion:testing and prediction[J]. SPE Shell Research, 1993, 8(3):178-184.
[27]  Pavelic P, Dillon P J, Barry K E, et al. Well clogging effects determined from mass balances and hydraulic response at a storm water ASR site[C]//Proceedings of the Third International Symposium on Artificial Recharge of Groundwater. Amsterdam:1998:21-25.
[28]  Dillon P J, Hickinbotham M R, Pavelic P. Review of international experience in injecting water into aquifers for storage and reuse[C]//Institution of Engineers. Barton:1994:13-14, 16-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133