全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

大陆岩石圈的热-流变底边界——以Kaapvaal、Fennoscandia和Slave克拉通为例
Thermal-rheological bottom boundary of continental lithosphere: case studies on cratons of Kaapvaal, Fennoscandia, and Slave

DOI: 10.7523/j.issn.2095-6134.2015.01.013

Keywords: 板块构造理论,岩石圈-软流圈边界,大陆岩石圈,克拉通,热-流变底部边界
plate tectonics
,lithosphere-asthenosphere boundary,continental lithosphere,craton,thermal-rheological bottom boundary

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 板块构造理论的一个基本假设是相对刚性的岩石圈板块漂浮在相对软弱的软流圈之上作欧拉运动.岩石圈与软流圈间存在边界面称为岩石圈-软流圈边界(LAB).提出一种半解析方法来确定大陆LAB:定义其为有效黏度取极小值所在的深度.该方法得到的LAB,综合考虑了大陆岩石圈地幔介质的热学和流变学性质,故称其为热-流变底部边界.对3个著名克拉通(Kaapvaal, Fennoscandia 和 Slave) 的研究表明:3个克拉通的热-流变底部边界在~250 km,与大地电磁测深等其他地球物理方法得到的结果一致.因为热-流变底部边界是从力学的角度来定义的,且提供了岩石圈板块浮于软流圈上运动的极大可能性,因而与板块构造理论的定义更为接近.在该边界及附近,主导的流变机制是湿橄榄石的扩散蠕变,有效黏度极小,差应力小,应变率相对较大.

References

[1]  Kumar P, Kawakatsu H. Imaging the seismic lithosphere-asthenosphere boundary of the oceanic plate[J]. Geochem Geophys Geosyst, 2011, 12. Q01006, doi:10.1029/2010GC003358.
[2]  Chapman D S. Thermal gradients in the continental crust[C]//Dawson J B, Carswell D A, Hall J. The Nature of the Lower Continental Crust. Carswell. Geological Society Special Publication, No. 24. Oxford Blackwell Scientific, 1986: 63-70.
[3]  臧绍先,刘永刚,宁杰远. 华北地区岩石圈热结构的研究[J]. 地球物理学报,2002, 45(1): 56-66.
[4]  McKenzie D, Jackson J, Priestley K. Thermal structure of oceanic and continental lithosphere[J]. Earth Planet Sci Lett, 2005, 233: 337-349.
[5]  An M J, Shi Y L. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Int, 2006, 159(3/4):257-266.
[6]  Fischer K M, Ford H A, Abt D L, et al. The lithosphere-asthenosphere boundary[J]. Annu Rev Earth Planet Sci, 2010, 38:551-575. doi:10.1146/annurev-earth-040809-152438.
[7]  Eaton D W, Darbyshire F, Evans R L, et al. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons[J]. Lithos, 2009, 109: 1-22.
[8]  Dragoni M, Pasquale V, Verdoya M, et al. Rheological consequences of the lithospheric thermal structure in the Fennoscandian Shield[J]. Global and Planetary Change, 1993, 8: 113-126.
[9]  Jones M Q. Heat flow in the Witwatersrand basin and environs and its significance for the South African Shield geotherm and lithosphere thickness[J]. J Geophys Res, 1988, 93(B4): 3 243-3 260.
[10]  Korja T. How is the European lithosphere imaged by magnetotellurics?[J] Surveys in Geophysics, 2007, 28(2/3): 239-272.
[11]  Ranalli G. Rheology of the Earth, Chapman & Hall[M]. London, UK, 1995:382.
[12]  Korenaga J, Karato S. A new analysis of experimental data on olivine rheology[J]. J Geophys Res, 2008, 113(B2):B02403. doi:10.1029/2007JB005100.
[13]  Jaupart C, Mareschal J C, Guillou-Frottier L, et al. Heat flow and thickness of the lithosphere in the Canadian Shield[J]. J Geophys Res, 1998, 103(B7): 15 269-15 286.
[14]  Kirby S H. Rheology of the lithosphere[J]. Rev Geophys Space Phys, 1983, 21(6): 1 458-1 487.
[15]  Kirby S H, Kronenberg A K. Rheology of the lithosphere: Selected topics[J]. Rev Geophys, 1987, 25(6): 1 219-1 244.</p>
[16]  ArtemievaIy M. The lithosphere: an interdisciplinary approach[M]. New York: Cambridge University Press, 2011.
[17]  Gaherty J B, Jordan T H. Lehmann discontinuity as the base of an anisotropic layer beneath continents[J]. Science, 1995, 268:1 468-1 471.
[18]  Debayle E, Kennett B L N. The Australian continental upper mantle: structure and deformation inferred from surface waves[J]. J Geophy Res, 2000, 105(B11): 25 423-25 450.
[19]  魏荣强. 鄂尔多斯及其邻区岩石圈三维流变结构的研究 .北京:北京大学,2005.
[20]  Forsyth D W. The evolution of the upper mantle beneath mid-ocean ridges[J]. Tectonophysics, 1977, 38(1/2): 89-118.
[21]  Gaherty J B, Jordan T H, Gee L S. Seismic structure of the upper mantle in a central Pacific corridor[J]. J Geophys Res, 1996, 101(B10): 22 291-22 309.
[22]  Kawakatsu H, Kumar P, Takei Y, et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates[J]. Science, 2009, 324: 499-502.
[23]  Hirth G, Kohlstedt D L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth Planet Sci Lett, 1996, 144(1/2): 93-108.
[24]  Yuan H Y, Romanowicz B. Lithospheric layering in the North American craton[J]. Nature, 2010, 466:1 063-1 068. doi: 10.1038/nature09332.
[25]  Artemieva I M, Walter D, Mooney W D. On the relations between cratonic lithosphere thickness, plate motions, and basal drag[J]. Tectonophysics, 2002, 358(1-4): 211-231.
[26]  Kukkonen I T, Peltonen P. Xenolith-controlled geotherm for the central Fennoscandian Shield: implications for lithosphere-asthenosphere relations[J]. Tectonophysics, 1999, 304(4): 301-315.
[27]  Russell J K, Dipple G M, Kopylova M G. Heat production and heat flow in the mantle lithosphere, Slave Craton, Canada[J]. Phys Earth Planet Int, 2001, 123(1): 27-44.
[28]  Li A, Burke K. Upper mantle structure of southern Africa from Rayleigh wave tomography[J]. J Geophys Res, 2006, 111. B10303. doi:10.1029/2006JB004321.
[29]  Chen C W, Rondenay S, Weertatatne D S, et al. New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion[J]. Geophy Res Let, 2007, 34(10), L10301. doi:10.1029/2007GL029535.
[30]  Jones A G, Lezeata P, Ferguson I A, et al. The electrical structure of the Slave craton[J]. Lithos, 2003, 71: 505-527.
[31]  Karato S, Wu P. Rheology of the upper mantle: a synthesis[J]. Science, 1993, 260: 771-778.
[32]  <p> Leeds A R, Knopoff L, Kausel E G. Variations of upper mantle structure under the pacific ocean[J]. Science, 1974, 186: 141-143.
[33]  Jones A G. Imaging the continental upper mantle using electromagnetic methods[J]. Lithos, 1999, 48: 57-80.
[34]  Rudnick L R, Nyblade A A. The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow.[C]//Fei Y, Bertka C M, Mysen B O. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis. R (Joe) Boyd Chem Soc Spec, 1999(The Geochemical Society, Houston, TX, 1999), 6:3-12.
[35]  Burov E B, Diament M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?[J] J Geophys Res, 1995, 100(B3): 3 895-3 904.
[36]  Bruneton M, Pedersen H A, Farra V, et al. Complex lithospheric structure under the central Baltic Shield from surface wave tomography[J]. J Geophys Res, 2004, 109(B10):B10303. doi:10.1029/2003JB002947.
[37]  Miensopust M, Jones A G, Garcia X, et al. Lithospheric studies of major Archean cratons and their Proterozoic bounding belts in southern Africa using MT[C]//British Geophysical Association Postgraduate Meeting. Edinburgh, 31 Aug-1 Sep, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133