全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

生物成因煤层气形成的微生物分子生态学研究进展
Research progress on molecular microbial ecology associated with the formation of biogenic coal bed methane

DOI: 10.7523/j.issn.2095-6134.2015.01.001

Keywords: 煤层气,生物成因气,微生物多样性,产甲烷菌
coal bed methane
,biogenic methane,microbial diversity,methanogen

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 生物成因煤层气广泛分布于全球煤层气田,是煤层气研究的重点.微生物是生物成因煤层气形成的关键因素.生物成因煤层气相关微生物分子生态学研究,将有助于解析生物成因气的形成机理,促进煤层气的开采和开发,具有潜在的研究和应用价值.本文分析微生物在生物成因煤层气生成中的作用,总结当前国内外关于煤层气田原位微生物多样性研究方面的最新进展,旨在为生物成因气相关微生物多样性研究及煤层气产业的可持续发展提供参考.

References

[1]  <p> Rightmire C T. Coalbed methane resource//Coalbed methane resources of the United States. Tulsa: American Association of Petroleum Geologists. Studies in Geology Series,1984,17:1-13.
[2]  Rice D D. Composition and origins of coalbed gas//Hydrocarbons from coal. Tulsa: American Association of Petroleum Geologists. Studies in Geology Series, 1993,38: 159-184.
[3]  Orem W H, Voytek M A, Jones E J, et al. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions [J]. Organic Geochemistry, 2010, 41(9): 997-1 000.
[4]  Orem W H, Tatu C A, Lerch H E, et al. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA [J]. Applied Geochemistry, 2007, 22(10): 2 240-2 256.
[5]  Li D M, Hendry P, Faiz M. A survey of the microbial populations in some Australian coalbed methane reservoirs [J]. International Journal of Coal Geology, 2008, 76(1/2): 14-24.
[6]  Wei M, Yu Z, Zhang H. Microbial diversity and abundance in a representative small-production coal mine of central China [J]. Energy & Fuels, 2013, 27(7): 3821-3829.
[7]  Strapo? D, Mastalerz M, Dawson K, et al. Biogeochemistry of microbial coal-bed methane [J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 617-656.
[8]  Fakoussa R, Hofrichter M. Biotechnology and microbiology of coal degradation [J]. Applied Microbiology and Biotechnology, 1999, 52(1): 25-40.
[9]  Ulrich G, Bower S. Active methanogenesis and acetate utilization in Powder River Basin coals, United States [J]. International Journal of Coal Geology, 2008, 76(1/2): 25-33.
[10]  Aravena R, Harrison S, Barker J, et al. Origin of methane in the Elk Valley coalfield, southeastern British Columbia, Canada [J]. Chemical Geology, 2003, 195(1-4):219-227.
[11]  Thielemann T, Cramer B, Schippers A. Coalbed methane in the Ruhr Basin, Germany: a renewable energy resource? [J]. Organic Geochemistry, 2004, 35(11/12): 1 537-1 549.
[12]  Shimizu S, Akiyama M, Naganuma T, et al. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan [J]. Geobiology, 2007, 5(4): 423-433.
[13]  Midgley D J, Hendry P, Pinetown K L, et al. Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia [J]. International Journal of Coal Geology, 2010, 82(3/4): 232-239.
[14]  Strapo? D, Mastalerz M, Eble C, et al. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios [J]. Organic Geochemistry, 2007, 38(2): 267-287.
[15]  Fry J C, Horsfield B, Sykes R, et al. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6~2.3 km) above 150 Ma basement rock [J]. Geomicrobiology Journal, 2009, 26(3): 163-178.
[16]  Penner T, Foght J, Budwill K. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures [J]. International Journal of Coal Geology, 2010, 82(1/2): 81-93.
[17]  Guo H, Yu Z, Liu R, et al. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China [J]. Applied Microbiology and Biotechnology, 2012, 96(6): 1 587-1 597.
[18]  Harris S H, Smith R L, Barker C E. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals [J]. International Journal of Coal Geology, 2008, 76(1/2): 46-51.
[19]  Green M S, Flanegan K C, Gilcrease P C. Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, USA [J]. International Journal of Coal Geology, 2008, 76(1/2): 34-45.
[20]  Doerfert S N, Reichlen M, Iyer P, et al. <em>Methanolobus zinderi</em> sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(5): 1 064-1 069.
[21]  Strapo? D, Ashby M, Wood L, et al. Significant contribution of methyl/methanol-utilising methanogenic pathway in a subsurface biogas environment//Applied microbiology and molecular biology in oilfield systems. Berlin: Springer, 2010: 211-216.
[22]  Singh D N, Kumar A, Sarbhai M P, et al. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane [J]. Applied microbiology and biotechnology, 2012, 93(3): 1 337-1 350.</p>
[23]  Martini A M, Walter L M, Ku T C W, et al. Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin [J]. AAPG bulletin, 2003, 87(8): 1 355-1 375.
[24]  Montgomery S L, Barker C E, Seamount D, et al. Coalbed methane, Cook Inlet, south-central Alaska: A potential giant gas resource [J]. AAPG bulletin, 2003, 87(1): 1-13.
[25]  Kotarba M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland [J]. Organic Geochemistry, 2001, 32(1): 163-180.
[26]  Klein DA, Flores RM, Venot C, et al. Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration [J]. International Journal of Coal Geology, 2008, 76(1/2): 3-13.
[27]  Tang Y Q, Ji P, Lai G L, et al. Diverse microbial community from the coalbeds of the Ordos Basin, China [J]. International Journal of Coal Geology, 2012, 90-91: 21-33.
[28]  Cheung M K, Au C H, Chu K H, et al. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing [J]. The ISME Journal, 2010, 4(8): 1 053-1 059.
[29]  Edwards R A, Rodriguez-Brito B, Wegley L, et al. Using pyrosequencing to shed light on deep mine microbial ecology [J]. BMC Genomics, 2006, 7(1): 57.
[30]  Dawson K S, Str?po? D, Huizinga B, et al. Quantitative fluorescence <em>in situ</em> hybridization analysis of microbial consortia from a biogenic gas field in Alaska's Cook Inlet Basin [J]. Applied and Environmental Microbiology, 2012, 78(10): 3 599-3 605.
[31]  Luton P, Wayne J, Sharp R, et al. The <em>mcrA</em> gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill [J]. Microbiology, 2002, 148(11): 3 521-3 530.
[32]  Gupta P, Gupta A. Biogas production from coal via anaerobic fermentation [J]. Fuel, 2014, 118: 238-242.
[33]  Shimizu S, Upadhye R, Ishijima Y, et al. <em>Methanosarcina horonobensis</em> sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation [J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(10): 2 503-2 507.
[34]  Scott C D, Woodward C A, Scott T C. Use of chemically modified enzymes in organic solvents for conversion of coal to nliquides [J]. Catalysis today, 1994, 19(3): 381-393.
[35]  Strapo? D, Picardal F W, Turich C, et al. Methane-producing microbial community in a coal bed of the Illinois Basin [J]. Applied and Environmental Microbiology, 2008, 74(8): 2 424-2 432.
[36]  Faiz M, Hendry P. Significance of microbial activity in Australian coal bed methane reservoirs: a review [J]. Bulletin of Canadian Petroleum Geology, 2006, 54(3): 261-272.
[37]  Schlüter A, Bekel T, Diaz N N, et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology [J]. Journal of biotechnology, 2008, 136(1/2): 77-90.
[38]  Guo H, Liu R, Yu Z, et al. Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China [J]. International journal of coal geology, 2012, 93: 56-61.
[39]  Barnhart E P, De León K B, Ramsay B D, et al. Investigation of coal-associated bacterial and archaeal populations from a diffusive microbial sampler (DMS) [J]. International Journal of Coal Geology, 2013, 115: 64-70.
[40]  Vnal B, Perry V R, Sheth M, et al. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water [J]. Frontiers in Microbiology, 2012, 3: 175.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133