全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于平移不变核的异构迁移学习
Heterogeneous transfer learning based on translation invariant kernels

DOI: 10.7523/j.issn.2095-6134.2015.01.020

Keywords: 异构迁移学习,平移不变核,RKHS
heterogeneous transfer learning
,translation invariant kernel,RKHS

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 提出一种新的异构迁移学习方法.利用与目标数据集相关的异构特征数据集.通过把目标集和异构集的数据使用平移不变核(欧式距离核和径向基函数核),映射到一个新的再生核希尔伯特空间上.在新空间中2个数据集的特征相同,特征维度相等,分布接近,且保持数据的拓扑性质不变.实验证明,该方法特别是基于欧式距离核的方法取得了较好的效果,在目标训练集的标注数据较少时,有大于5%甚至超过10%的精度提高.

References

[1]  Gu Q Q, Li Z H, Han J W. Learning a kernel for multi-task clustering[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. San Francisco, USA, 2011.
[2]  Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210.
[3]  Zhu Y, Chen Y, Lu Z, et al. Heterogeneous transfer learning for image classification[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. San Francisco,USA, 2011:1 304-1 309.
[4]  Dai W Y, Chen Y Q, Xue G R, et al. Translated learning: transfer learning across different feature spaces[C]//Proc 21st Ann Conf Neural Information Processing Systems. Vancouver, Canada, 2008.
[5]  Wang C, Mahadevan S. Heterogeneous domain adaptation using manifold alignment[C]//Proc 22nd International Joint Conference on Artificial Intelligence. Barcelona, Spain, 2011: 1 541-1 546.
[6]  Duan L, Xu D, Tsang I W. Learning with augmented features for heterogeneous domain adaptation[C]//Proceedings of the 29th International Conference on Machine Learning. Edinburgh, Scotland, UK, 2012.
[7]  Kulis B, Saenko K, Darrell T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms[C]//Computer Vision and Pattern Recognition, Colorado. USA, 2011: 1 785-1 792.
[8]  Guan Z D, Bai S B, Zhu T S. Heterogeneous domain adaptation using linear kernel[C]//ICPCA-SWS. Vina del Mar, Chile, Springer, 2013.
[9]  Gretton A, Borgwardt K M, Rasch M J, et al. A kernel method for the two-sample-problem[C]//Proceedings of the 2006 Conference Advances in Neural Information Processing Systems 19. Vancouver, Canada, MIT Press, 2006, 20:513-520.</p>
[10]  Yang Q, Chen Y, Xue G, et al. Heterogeneous transfer learning for image clustering via the social web[C]//Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP. Suntec, Singapore, 2009:1-9.
[11]  <p> Pan S J, Yang Q. A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering , 2010,22(10):1 345-1 359.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133