|
- 2015
轻量级分组密码RECTANGLE在X86和X64平台的软件实现评估
|
Abstract:
摘要 轻量级密码是当前密码学研究的一个热门课题,设计硬件实现和软件实现性能均衡的轻量级密码算法已成为趋势.尽管在轻量级密码算法软件实现方面已经有一些理论和实际的研究,但是公平地比较不同算法的软件实现性能仍然很困难.切片实现是软件实现时模仿硬件实现的方式.本文给出RECTANGLE在X86和X64平台上切片实现以及速度测试结果.结果表明,RECTANGLE在中高端平台展现了非常优秀的软件实现性能.在2.9 GHz Intel(core) i5-4570s CPU平台RECTANGLE单块加解密速度分别为34.2和30.9 cyles/byte;使用SSE指令集,加解密速度分别为5.2和5.1 cycles/byte;使用AVX指令集,加解密速度分别为2.6和2.5 cycles/byte.
[1] | Shamir A.SQUASH:a new MAC with provable security properties for highly constrained devices such as RFID tags[C]//Nyberg K. FSE 2008. Berlin Heidelberg:Springer, 2008:144-157. |
[2] | Shibutani K, Isobe T, Hiwatari H, et al. Piccolo:an ultra-lightweight block cipher[C]//Preneel B, Takagi T.CHES 2011. Berlin Heidelberg:Springer, 2011:342-357. |
[3] | Zhang W T, Bao Z Z, Lin D D, et al. RECTANGLE:a bit-slice ultra-lightweight block cipher suitable for multiple platforms[R/OL].IACR Cryptology ePrint Archive.(2014)[2014-11].http://eprint.iacr.org/2014/084.pdf. |
[4] | Matsui M, Murakami Y. Minimalism of software implementation[C]//Moriai S. FSE 2013. Berlin Heidelberg:Springer, 2014:393-409. |
[5] | Ted K, Phillip R. The software performance of authenticated encryption modes[C]//Joux A.FSE 2011. Berlin Heidelberg:Springer, 2011:306-327. |
[6] | Matsui M, Nakajima J. On the power of bitslice implementation on intel Core2 processor[C]//Paillier P, Verbauwhede I. CHES 2007. Berlin Heidelberg:Springer, 2007:121-134. |
[7] | Wu H. SHA-3 proposal JH[R/OL]. Submission to NIST. (2008)[2014-11]. http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf.</p> |
[8] | Miroslav K, Ventzislav N, Peter R. Low-latency encryption-Is Lightweight=Light+Wait"?[C]//Prouff E, Schaumont P. CHES 2012. Berlin Heidelberg:Springer, 2012:426-446. |
[9] | Nigel Smart (BRIS).ECRYPT Ⅱ Yearly Report on Standardization (2012-2013)[R/OL]. European:ECRYPT,(2013-01-22)[2014-12]. http://ec.europa.eu/information_society/apps/projects/logos/6/216676/080/deliverables/001_DSPA19.pdf. |
[10] | Axel Y. Lightweight cryptography-cryptographic engineering for a pervasive world[R/OL]. IACR Cryptology ePrint Archive.(2009)[2014-12]. http://eprint.iacr.org/2009/516.pdf. |
[11] | Seiichi M, Shiho M. Lightweight cryptography for the cloud:exploit the power of bitslice implementation[C]//Prouff E, Patrick S.CHES 2012. Berlin Heidelberg:Springer, 2012:408-425. |
[12] | Gong Z, Nikova S, Law Y. KLEIN:a new family of lightweight block ciphers[C]//Juels A, Paar C. RFIDSec 2011. Berlin Heidelberg:Springer, 2012:1-18. |
[13] | Eisenbarth T, Kumar S, Paar C, et al. A survey of lightweight-cryptography implementations[J]. IEEE Design & Test of Computers, 2007, 24(6):522-533. |
[14] | K?nighofer R. A fast and cache-timing resistant implementation of the AES[C]//Malkin T.CT-RSA 2008. Berlin Heidelberg:Springer, 2008:187-202. |
[15] | Ross A, Eli B, Lars K. Serpent:a proposal for the advanced encryption standard[R/OL]. NIST AES Proposal. (1998)[2014-11]. http://cryptosoft.net/docs/Serpent.pdf. |
[16] | Ryad B, Guo J, Victor L, et al. Implementing lightweight block ciphers on x86 architectures[C]//Lange T, Lauter K. SAC 2013. Berlin Heidelberg:Springer, 2014:324-351. |
[17] | Martin A, Benedikt D, Elif K, et al. Block ciphers:focus on the linear layer (feat. PRIDE)[C]//Garay J, Gennaro R. CRYPTO 2014. Berlin Heidelberg:Springer, 2014:57-76. |
[18] | Wu W L, Zhang L. LBlock:a lightweight clock cipher[C]//Lopez J, Tsudik G. ACNS 2011. Berlin Heidelberg:Springer, 2012:327-344. |
[19] | Suzaki T, Minematsu K, Morioka S, et al. TWINE:a lightweight block cipher for multiple platforms[C]//Knudsen R, Wu H. SAC 2012. Berlin Heidelberg:Springer, 2012:340-355. |
[20] | Ray B, Douglas S, Jason S, et al. The SIMON and SPECK families of lightweight block ciphers[R/OL]. IACR Cryptology ePrint Archive.(2013)[2014-11].https://eprint.iacr.org/2013/404.pdf. |
[21] | Vincent G, Ga?tan L, Fran S, et al. LS-designs:bitslice encryption for efficient masked software implementations[C]//FSE2014. Berlin Heidelberg:Springer, 2014. |
[22] | Thomas, Gong Z, Tim, et al. Compact implementation and performance evaluation of block ciphers in aTtiny devices[C]//Mitrokotsa A, Vaudenay S. AFRICACRYPT 2012.Berlin Heidelberg:Springer. 2012:172-187. |
[23] | Gueron S. Intel advanced encryption standard (AES) instructions set[R/OL]. Intel White Paper Rev3.01.(2012)[2014-11]. https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf. |
[24] | Biham E. A fast new DES implementation in software[C]//Biham E. FSE1997. Berlin Heidelberg:Springer, 1997:260-272. |
[25] | <p> Moradi A, Poschmann A, Ling A, et al. Pushing the limits:a very compact and a threshold implementation of AES[C]//Paterson G. EUROCRYPT 2011.Berlin Heidelberg:Springer, 2011:69-88. |
[26] | Bogdanov A, Knudsen L, Leander G, et al. PRESENT:an ultra-lightweight block cipher[C]//Paillier P, Verbauwhede I. CHES 2007. Berlin Heidelberg:Springer, 2007:450-466. |
[27] | De C, Dunkelman O, Kne?evi'c M.KATAN and KTANTAN:a family of small and efficient hardware-oriented block ciphers[C]//clavier C, Gaj K. CHES 2009. Berlin Heidelberg:Springer, 2009:272-288. |
[28] | Aumasson P, Henzen L, Meier W, et al. Quark:a lightweight hash[C]//Mangard S, Standaert X.CHES 2010. Berlin Heidelberg:Springer, 2010:1-15. |
[29] | Guo J, Peyrin T, Poschmann A. The PHOTON family of lightweight hash functions[C]//Rogaway P.CRYPTO 2011. Berlin Heidelberg:Springer, 2011:222-239. |
[30] | K?sper E, Schwabe P. Faster and timing:attack resistant AES-GCM[C]//Clavier C, Gaj K.CHES 2009. Berlin Heidelberg:Springer, 2009:1-17. |
[31] | Joan D, Micha?l P, Gilles A, et al. Nessie proposal:NOEKEON[C/OL]. First Open NESSIE Workshop.(2000)[2014-11]. http://gro.noekeon.org/Noekeon-spec.pdf. |
[32] | Guido B, Joan D, Michael P, et al. The keccak reference[R/OL]. Submission to NIST(Round 3), 2011[2014-11]. http://keccak.noekeon.org/. |