|
- 2016
废水生物处理过程中污泥的微生物种群结构和PAHs降解菌研究进展
|
Abstract:
摘要 含有难降解有机物的工业废水严重威胁生态和人类健康.活性污泥法是工业废水处理的核心技术,细菌种群在其中发挥重要作用.研究污泥的微生物群体结构不仅为废水处理厂的稳定运行提供指导,而且可以提高废水处理效率.基于高通量序列分析的细菌门/属分类或操作分类单元聚类分析研究表明,市政污泥的微生物多样性存在地域性差异;不同的工业废水污泥的微生物群体组成各有特点,在门/纲分类水平上明显不同于市政污泥;焦化废水污泥微生物种群结构在门分类水平上具有相似的微生物组成;水质是微生物种群结构形成的主要驱动力,环境条件也有一定的影响;此外,多种多环芳烃降解菌已经被鉴定,并分析了其降解途径和关键酶基因.本文主要综述这几方面的研究进展.
[1] | Bacosa H P, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan[J]. Journal of Hazardous Materials, 2015, 11(283):689-697. |
[2] | Kim B C, Kim S, Shin T, et al. Comparison of the bacterial communities in anaerobic, anoxic, and oxic chambers of a pilot A(2)O process using pyrosequencing analysis[J]. Current Microbiol, 2013, 66(6):555-565. |
[3] | Gómez-Silván C, Vílchez-Vargas R, Arévalo J, et al. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor[J]. Bioresource Technology, 2014, 169:126-133. |
[4] | Zhang T, Shao M F, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. ISME Journal, 2012, 6(6):1 137-1 147. |
[5] | Pedros-Alio C. Marine microbial diversity: can it be determined[J]. Trends in Microbiology, 2006, 14(6):257-263. |
[6] | Kim T S, Jeong J Y, Wells G F, et al. General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor[J]. Applied Microbiology and Biotechnology, 2013, 97(4):1 755-1 765. |
[7] | Ibarbalz F M, Figuerola E L, Erijman L. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks[J]. Water Research, 2013, 47(11):3 854-3 864. |
[8] | Zhang L, Sun Y, Guo D, et al. Molecular diversity of bacterial community of dye wastewater in an anaerobic sequencing batch reactor[J]. African Journal of Microbiology Research, 2012, 6:6 444-6 453. |
[9] | Chen Q, Ni J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria[J]. Journal of Industriali Microbiology and Biotechnology, 2011, 38 (9):1 305-1 310. |
[10] | Thomsen T R, Kong Y, Nielsen P H. Ecophysiology of abundant denitrifying bacteria in activated sludge[J]. FEMS Microbiology Ecology, 2007, 60 (3):370-382. |
[11] | Mao Y, Zhang X, Xia X, et al. Versatile aromatic compound-degrading capacity and microdiversity of <em>Thauera </em>strains isolated from a coking wastewater treatment bioreactor[J]. Journal of Industriali Microbiology and Biotechnology, 2010, 37(9):927-934. |
[12] | Zhao Y, Huang J, Zhao H, et al. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates[J]. Bioresource Technology, 2013, 143:439-446. |
[13] | Debruyn J M, Chewning C S, Sayler G S. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments[J]. Environmental Science and Technology, 2007, 41(15):5 426-5 432. |
[14] | Kim S J, Kweon O, Jones R C, et al. Complete and integrated pyrene degradation pathway in <em>Mycobacterium vanbaalenii</em> PYR-1 based on systems biology[J]. Journal Bacteriology, 2007, 189(2):464-472. |
[15] | Ma J, Xu L, Jia L. Characterization of pyrene degradation by <em>Pseudomonas</em> sp. strain Jpyr-1 isolated from active sewage sludge[J]. Bioresource Technology, 2013, 140:15-21. |
[16] | Lyu Y, Zheng W, Zheng T, et al. Biodegradation of polycyclic aromatic hydrocarbons<em> by Novosphingobium pentaromativorans US6-1</em>[J]. PLOS One, 2014, 9(7):e101438. |
[17] | Gallego S, Vila J, Tauler M, et al. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium[J]. Biodegradation, 2014, 25(4):543-556. |
[18] | Ding G C, Heuer H, Zühlke S, et al. Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system[J]. Applied Microbiology and Biotechnology, 2010, 76(14):4 765-4 771. |
[19] | Singh S N, Kumari B, Upadhyay S K, et al. Bacterial degradation of pyrene in minimal salt medium mediated by catechol dioxygenases: enzyme purification and molecular size determination[J]. Bioresource Technology, 2013, 133:293-300. |
[20] | 杨轩,张威,李师翁,等. 多环芳烃降解菌的分离鉴定及其生理特性研究[J]. 环境科学学报,2012,32(5):1 033-1 040. |
[21] | Liang L, Song X, Kong J, et al. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp[J]. Biodegradation, 2014, 25(6):825-833. |
[22] | Morris B E, Gissibl A, Kümmel S, Richnow H H, Boll M. A PCR-based assay for the detection of anaerobic naphthalene degradation[J]. FEMS Microbiology Letter, 2014, 354(1):55-59.</p> |
[23] | Burns A S, Pugh C W, Segid Y T, et al. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage[J]. Biodegradation, 2012, 23: 415-429. |
[24] | <p> Zhang W H, Wei C H, Yan B, et al. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants[J]. Environmental Science and Pollution Research, 2013, 20:6 418-6 432. |
[25] | Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology, 2002, 13:218-227. |
[26] | Werner J, Knights D, Garcia M L, et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems[J]. Proceeding of the National Academy of Sciences USA, 2011, 108:4 158-4 163. |
[27] | Jia R, Zhang Y, Zhang Q, et al. Isolation and degradation kinetics of the quinoline degradation bacterium strains from coking wastewater[J]. Advanced Materials Research, 2014, 864-867: 209-212. |
[28] | 张玉秀, 蒙小俊, 柴团耀. 苯酚降解菌红球菌(<em>Rhodococcus</em> sp.)P1的鉴定及其在焦化废水中的应用[J]. 微生物学报,2013, 53(10):1 117-1 124. |
[29] | Van der Gast C J, Ager D, Lilley A K. Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors[J]. Environmental Microbiology, 2008, 10(6):1 411-1 418. |
[30] | Desta A F, Assefa F, Leta S, et al. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia[J]. PLOS One, 2014, 26:9(12):e115576. |
[31] | Bai Y, Sun Q, Sun R, et al. Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters[J]. Environmental Science Technology, 2011, 45(5):1 940-1 948. |
[32] | Zhang J, Wen D, Zhao C, et al. Bioaugmentation accelerates the shift of bacterial community structure against shock load: a case study of coking wastewater treatment by zeolite-sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2014, 98(2):863-873. |
[33] | Zhu X, Tian J, Liu C, et al. Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating coking wastewater[J]. Applied Microbiology and Biotechnology, 2013, 97(19):8 767-8 775. |
[34] | Kim Y M, Lee D S, Park C, et al. Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process[J]. Water Research, 2011, 45(3):1 267-1 279. |
[35] | Park S, Yu J, Byun I, et al. Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions[J]. Bioresource Technology, 2011, 102(15):7 265-7 271. |
[36] | Bai Y H, Sun Q H, Zhao C, et al. Aerobic degradation of pyridine by a new bacterial strain, <em>Shinella zoogloeoides</em> BC026[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(11):1 391-1 400. |
[37] | Ma Q, Qu Y, Shen W, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179:436-443. |
[38] | Beller H R, Chain P S G, Letain T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium <em>Thiobacillus denitrificans</em>[J]. Journal of Bacteriology, 2006, 188 (4):1 473-1 488. |
[39] | Felfoldi T, Székely A J, Gorál R, et al. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent[J]. Bioresource Technology, 2010, 101 (10):3 406-3 414. |
[40] | 王蕾,聂麦茜,杨学福,等. 高效芘降解细菌的筛选、鉴定及其基本特性研究[J]. 西安建筑科技大学学报:自然科学版, 2011, 43(6):859-863,881. |
[41] | 伍凤姬,张梦露,郭楚玲,等. 菌源对多环芳烃降解菌的筛选及降解性能的影响[J]. 环境工程学报, 2014, 8(8):3 511-3 518. |
[42] | 唐玉斌,王晓朝,陈芳艳,等. 一株芴降解菌的分离鉴定及其对多环芳烃的降解广谱性研究[J]. 环境工程学报, 2011,5(2):467-471. |
[43] | 唐玉斌,马姗姗,王晓朝,等. 一株芘的高效降解菌的选育及其降解性能研究[J]. 环境工程学报,2011,5(1):48-54. |
[44] | Ghosh I, Jasmine J, Mukherji S. Biodegradation of pyrene by a <em>Pseudomonas aeruginosa</em> strain RS1 isolated from refinery sludge[J]. Bioresource Technology, 2014, 166:548-558. |