全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Rh(III)催化的2-羟基苯乙烯与炔烃的[5+2]/[3+2]环加成反应的理论计算
Studies on Rh(III)-catalyzed[5+2]/[3+2]cycloadditions of 2-hydroxystyrenes with alkynes

DOI: 10.7523/j.issn.2095-6134.2016.01.009

Keywords: 环加成反应,密度泛函计算,铑催化
cycloaddition
,DFT computation,Rh-catalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 Seoane及其合作者近年来报道了两例新的Rh(III)催化的环加成反应:1)2-羟基苯乙烯与炔烃进行[5+2]环加成生成七元含氧杂环和2)2-异烯丙基苯酚和炔烃进行[3+2]环加成生成五元螺环.这两例反应使用的催化剂和反应条件相同, 底物相似,但产物完全不同.本文采用密度泛函方法对这两例反应的催化机理进行深入的对比研究,以探究造成不同选择性的原因.研究结果表明,两反应均由O—H键断裂、C—H键活化、炔烃迁移插入及还原消除4步组成.在还原消除中,当空间位阻影响大于去芳香性影响时生成五元螺环产物;反之,则生成七元含氧杂环.还发现反应中C—H键活化的选择性是由C—H键活化及炔烃迁移插入过渡态中的环张力大小决定的.

References

[1]  Rubin M, Rubina M, Gevorgyan V. Transition metal chemistry of cyclopropenes and cyclopropanes[J]. Chem Rev, 2007, 107(7): 3 117-3 179.
[2]  Yeung C S, Dong V M. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds[J]. Chem Rev, 2011, 111(3): 1 215-1 292.
[3]  Wencel D J, Glorius F. C—H bond activation enables the rapid construction and late-stage diversification of functional molecules[J]. Nat Chem, 2013, 5: 369-375.
[4]  Rakshit S, Patureau F W, Glorius F. Pyrrole synthesis via allylic sp3 C—H activation of enamines followed by intermolecular coupling with unactivated alkynes[J]. J Am Chem Soc, 2010, 132(28): 9 585-9 587.
[5]  Neely J M, Rovis T. Rh(III)-catalyzed regioselective synthesis of pyridines from alkenes and α,β-unsaturated oxime esters[J]. J Am Chem Soc, 2013, 135(1): 66-69.
[6]  Dooley J D, Reddy C S, Lam H W. Catalyst-controlled divergent C—H functionalization of unsymmetrical 2-aryl cyclic 1,3-dicarbonyl compounds with alkynes and alkenes[J]. J Am Chem Soc, 2013, 135(29): 10 829-10 836.
[7]  Roy L E, Hay P J, Martin R L. Revised basis sets for the LANL effective core potentials[J]. J Chem Theory Comput, 2008, 4(7): 1 029-1 031.
[8]  Dang Y F, Qu S L, Wang Z X, et al. Mechanism and origins of Z selectivity of the catalytic hydroalkoxylation of alkynes via rhodium vinylidene complexes to produce enol ethers[J].Organometallics, 2013, 32(9): 2 804-2 813.
[9]  Seoane A, Casanova N, Qui?ones N, et al. Rhodium(III)-catalyzed dearomatizing (3 + 2) annulation of 2-alkenylphenols and alkynes[J]. J Am Chem Soc, 2014, 136(21): 7 607-7 610.
[10]  Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5 648-5 652.
[11]  Dang Y F, Qu, S L, Wang Z X, et al. A computational mechanistic study of an unprecedented heck-type relay reaction:insight into the origins of regio- and enantioselect-ivities[J]. J Am Chem Soc, 2014, 136(3): 986-998.
[12]  Qu S L, Dang Y F, Wen M W, et al. Mechanism of the methyltrioxorhenium-catalyzed deoxydehydration of polyols:a new pathway revealed[J]. Chem Eur J, 2013, 19(12): 3 827-3 832.
[13]  <p> Lautens M, Klute W, Tam, W. Transition metal-mediated cycloaddition reactions[J]. Chem Rev, 1996, 96(1): 49-92.
[14]  Colby D A, Bergman R G, Ellman J A. Rhodium-catalyzed C—C bond formation via heteroatom-directed C—H bond activation[J]. Chem Rev, 2010, 110(2): 624-655.
[15]  Ackermann L, Lygin A V, Hofmann N. Ruthenium-catalyzed oxidative annulation by cleavage of C—H/N—H bonds[J]. Angew Chem Int Ed, 2011, 50(28): 6 379-6 382.
[16]  Mehta V P, García J A, Greaney M F. Aromatic homologation by non-chelate-assisted RhIII-catalyzed C—H functionalization of arenes with alkynes[J]. Angew Chem, Int Ed, 2014, 53(6): 1 529-1 533.
[17]  Stuart D R, Bertrand L M, Burgess K M N, et al. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes[J]. J Am Chem Soc, 2008, 130(49): 16 474-16 475.
[18]  Guimond N, Gouliaras C, Fagnou K. Rhodium(III)-catalyzed isoquinolone synthesis: the N—O bond as a handle for C—N bond formation and catalyst turnover[J]. J Am Chem Soc, 2010, 132(20): 6 908-6 909.
[19]  Nan J, Zuo Z, Luo L, et al. RuII-catalyzed vinylative dearomatization of naphthols via a C(sp2)—H bond activation approach[J]. J Am Chem Soc, 2013, 135(46): 17 306-17 309.
[20]  Cui S, Zhang Y, Wu Q. Rh(III)-catalyzed C—H activation/cycloaddition of benzamides and methylenecyclopropanes: divergence in ring formation[J]. Chem Sci, 2013, 4(9): 3 421-3 426.
[21]  Zhou M B, Song R J, Wang C Y, et al. Synthesis of azepine derivatives by silver-catalyzed cycloaddition of g-amino ketones with alkynes[J]. Angew Chem Int Ed, 2013, 52(41): 10 805-10 808.
[22]  Seoane A, Casanova N, Qui?ones N, et al. Straightforward assembly of benzoxepines by means of a rhodium(III)-catalyzed C—H functionalization of o-vinylphenols[J]. J Am Chem Soc, 2014, 136(3): 834-837.
[23]  Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 . Gaussian, Inc.: Wallingford, CT, 2009.
[24]  Xu L, Zhu Q, Huang G, et al. Computational elucidation of the internal oxidant-controlled reaction pathways in Rh(III)-catalyzed aromatic C—H functionalization[J]. J Org Chem, 2011, 76(9): 3 523-3 526.
[25]  Lapointe D, Fagnou K. Overview of the mechanistic work on the concerted metallation-deprotonation pathway[J]. Chem Lett, 2010, 39(11): 1 118-1 126.
[26]  Liu L, Wu Y, Wang T, et al. Mechanism, reactivity, and selectivity in Rh(III)-catalyzed phosphoryl-directed oxidative C—H activation/cyclization:a DFT study[J]. J Org Chem, 2014, 79(11): 5 074-5 081.
[27]  Quinones N, Seoane A, arcia-Fandino R, et al. Rhodium(III)-catalyzed intramolecular annulations involving amide-directed C—H activations: synthetic scope and mechanistic studies[J]. Chem Sci, 2013, 4(7): 2 874-2 879.
[28]  Hosokawa T, Murahashi S. New aspects of oxypalladation of alkenes[J]. Acc Chem Res, 1990, 23(2): 49-54.</p>

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133