|
- 2017
变化环境中分枝树上有偏随机游动的状态分类
|
Abstract:
摘要 考虑变化环境中分枝树上的广义有偏随机游动,分别得到随机游动为暂留的、正常返的和零常返的充分条件,为进一步研究这类随机游动的中心极限定理等性质做了铺垫。
[1] | Polya G. Vber eine Anfgabe der Wahrscheinlichkeitsrechnung betref fend die Irrfahrt im Strassennetz[J]. Mathematische Annalen, 1921,84:149-160. |
[2] | Collevecchio A. On the Transience of processes defined on Galton-Watson trees[J]. Ann Probab, 2006, 34:870-878. |
[3] | Neveu J. Arbres et processus de Galton-Watson[J]. Ann Inst H Poincaré Probab Stastist, 1968, 22:199-207. |
[4] | Lyons R, Peres Y. Probability on trees and networks[M]. Cambridge:Cambridge University Press, 2016.</p> |
[5] | Zeitouni O. Random walks in random environment, XXXI Summer school in probability, St Flour.[J] Lecture notes in Math, 2004, 1837:193-312. |
[6] | Révész P. Random Walk in Random and Non-Random Environments[M]. 2nd ed. Hackensack and New York:World Scientific Publishing Co Pte Ltd, 2005. |
[7] | Wolfgang W. Random walk on infinite graphs and groups[M]. Cambridge:Cambridge University Press, 2000. |
[8] | <p> 威廉·费勒. 概率论及其应用[M]. 3版. 胡迪鹤译. 北京:人民邮电出版社, 2006. |
[9] | Doyle P, Snell J L. Random walks and electric networks[J]. American Mathematical Monthly, 2000, 26(4):595-599. |
[10] | Lyons R. Random walks and percolation on trees[J]. Ann Probab, 1990, 18:931-958. |
[11] | Peres Y, Zeitouni O. A central limit theorem for biased random walks on Galton-Watson trees[J]. Probab Theory Realated Fields, 2008,140(3/4):595-629. |