全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一种鲁棒的多尺度稀疏表示SAR目标识别方法
A robust SAR target recognition method based on multi-scale feature and sparse representation

DOI: 10.7523/j.issn.2095-6134.2017.01.013

Keywords: SAR,目标识别,稀疏表示,多尺度
SAR
,target recognition,sparse representation,multi-scale

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 提出一种基于多尺度Gabor滤波特征提取和稀疏表示的SAR图像目标识别方法。首先,在目标分割的基础上,利用Gabor滤波器对SAR目标图像在不同方向上进行滤波,增强目标的局部特征;然后,根据稀疏表示模型,以训练样本特征为原子构建字典,利用稀疏求解算法选择最优的原子集合来表示测试样本特征,进而计算表示系数中非负值的l1范数来判别测试样本。实验结果验证了该算法的有效性与鲁棒性。

References

[1]  Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. Siam Review, 2001, 43(1):33-61.
[2]  Daugman J G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1988, 36(7):1169-1179.
[3]  Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2008, 53(12):4655-4666.
[4]  Wipf D P, Rao B D. An empirical bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7):3704-3716.
[5]  Min H B, Rong P, Wu T, et al. Automated segmentation of mouse brain images using extended MRF[J]. Neuroimage, 2009, 46(3):717-725.
[6]  <p> Fennell M T, Wishner R P. Battlefield awareness via synergistic SAR and MTI exploitation[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(2):39-43.
[7]  王保云, 张逸为, 张荣,等. 一种基于动态字典学习的SAR图像目标识别算法[J]. 光电工程, 2013, 40(6):17-25.
[8]  周雨, 王海鹏, 陈思喆. 基于数值散射模拟与模型匹配的SAR自动目标识别研究[J]. 雷达学报, 2015, 4(6):666-673.
[9]  陈玲艳, 刘智, 张红. 基于水体散射特性的SAR图像水体检测[J]. 遥感技术与应用, 2014, 29(6):963-969.
[10]  Thiagarajan J J, Ramamurthy K N, Knee P, et al. Sparse representations for automatic target classification in SAR images[C]//International Symposium on Communications, Control and Signal Processing, 2010:1-4.
[11]  刘中杰, 庄丽葵, 曹云峰,等. 基于主元分析和稀疏表示的SAR图像目标识别[J]. 系统工程与电子技术, 2013, 35(2):282-286.
[12]  Larlus D, Jurie F. Combining appearance models and Markov random fields for category level object segmentation[C]//IEEE Conference on Computer Vision & Pattern Recognition, 2008:1-7.</p>
[13]  Novak L M. State-of-the-art of SAR automatic target recognition[C]//Record of the IEEE 2000 International Radar Conference. IEEE, 2000:836-843.
[14]  Novak L M, Owirka G J, Brower W S. Performance of 10-and-20-target MSE classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1279-1289.
[15]  Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace Electronic Systems, 2001, 37(2):643-654.
[16]  Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1994, 41(12):3397-3415.
[17]  程建, 黎兰, 王海旭. 稀疏表示框架下的SAR目标识别[J]. 电子科技大学学报, 2014,43(4):524-529.
[18]  齐会娇, 王英华, 丁军,等. 基于多信息字典学习及稀疏表示的SAR目标识别[J]. 系统工程与电子技术, 2015, 37(6):1280-1287.
[19]  Witkin A P. Scale-space filtering[C]//International Joint Conference on Artificial Intelligence. 1983:329-332.
[20]  Mar?elja, S. Mathematical description of the responses of simple cortical cells[J]. Journal of the Optical Society of America, 1980, 70(11):1297-1300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133