|
- 2017
荒漠植物白刺光合作用对人工模拟增雨的响应与适应
|
Abstract:
摘要 研究未来降水增加条件下荒漠植物白刺光合作用对人工模拟增雨的响应和适应。实验共设置5个处理,包括对照、自然降水基础上分别增加年平均降水量(145 mm)的25%、50%、75%和100%。对2010年生长季白刺叶片光合速率、叶周气温、清晨叶水势、土壤含水量等监测指标进行分析。研究结果表明:白刺叶片净光合速率与叶周气温之间呈二次函数关系,人工增雨处理后拟合曲线顶点左右平移。与对照相比,25%和50%增雨处理样地的拟合曲线顶点左移,顶点对应的叶周气温较对照样地(29.31 ℃)分别降低0.44和0.74 ℃;75%和100%增雨处理样地的拟合曲线大幅度右移,顶点对应的叶周气温较对照样地分别升高2.26和6.02 ℃左右。人工模拟增雨改变了白刺光合作用对温度的适应范围。
[1] | Song W M, Chen S P, Wu B, et al. Vegetation cover and rain timing co-regulate the responses of soil CO<sub>2</sub> efflux to rain increase in an arid desert ecosystem [J]. Soil Biology & Biochemistry, 2012, 49: 114-123. |
[2] | Song W M, Chen S P, Zhou Y D, et al. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios[J]. Scientific Reports, 2015, 5(12):1 436-1 438. |
[3] | Wohlfahrt G, Fenstermaker L F, Arnone J A. Large annual net ecosystem CO<sub>2</sub> uptake of a Mojave Desert ecosystem [J]. Global Change Biology, 2008, 14: 1 475-1 487. |
[4] | Parick L D, Ogle K, Bell C W, et al. Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics [J]. Global Change Biology, 2009, 15:1 214-1 229. |
[5] | 朱雅娟,贾子毅,吴波,等. 模拟增雨对荒漠灌木白刺枝叶生长的促进作用[J]. 林业科学研究, 2012, 25(5): 626-631. |
[6] | 何季, 吴波, 鲍芳,等. 人工模拟增雨对乌兰布和沙漠白刺生物量分配的影响[J]. 林业科学, 2016, 52(5):81-91. |
[7] | 任昱,吴波,卢琦,等. 荒漠植物白刺叶片气孔性状对模拟增雨的响应[J].林业科学研究, 2015, 28(6): 865-870. |
[8] | Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis [J]. Plant, Cell and Environment, 2007, 30: 1 086-1 106. |
[9] | Gunderson C A, O'Hara K H, Campion C M, et al. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate [J]. Global Change Biology, 2010, 16: 2 272-2 286. |
[10] | Pachauri R K, Meyer L A. Climate change 2014: synthesis report. Contribution of Working Groups I, Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change [R]. Geneva, Switzerland: IPCC, 2014. |
[11] | Yan L M, Chen S P, Huang J H, et al. Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe [J]. Global Change Biology, 2011, 17: 1 990-2 001. |
[12] | Zhang J X, Gu L H, Bao F, et al. Nitrogen control of <sup>13</sup>C enrichment in heterotrophic organs relative to leaves in a landscape building desert plant species [J]. Biogeosciences, 2015, 12: 15-27. |
[13] | Llorens L, Pe?uelas J, Beier C, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north-south European gradient [J]. Ecosystems, 2004, 7: 613-624. |
[14] | Li Y G, Jiang G M, Liu M Z, et al. Photosynthetic response to precipitation/rainfall in predominant tree (<em>Ulmus pumila</em>) seedlings in Hunshandak Sand land, China [J]. Photosynthetica, 2007, 45 (1): 133-138. |
[15] | Yamori W, Noguchi K, Terashima I. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions [J]. Plant, Cell and Environment, 2005, 28:536-547. |
[16] | Mooney H A, Bj?rkman O, Collatz G J. Photosynthetic acclimation to temperature in desert shrub, <em>Larrea divaricata</em>: I. Carbondioxide exchange characteristics of intact leaves [J]. Plant Physiology, 1978, 61: 406-410. |
[17] | Xie J X, Li Y, Zhai C X, et al. CO<sub>2</sub> absorption by alkaline soils and its implication to the global carbon cycle [J]. Environmental Geology, 2009, 56: 953-961. |
[18] | 程磊磊,郭浩,吴波,等. 荒漠生态系统功能及服务的评估体系与方法[J]. 绿洲农业科学与工程,2016, 2(1):12-18. |
[19] | 张金鑫,卢琦,吴波,等. 白刺枝叶生长对人工模拟降雨的响应[J]. 林业科学研究, 2012, 25(2): 130-137. |
[20] | Haase P, Pugnaire F I, Clark S C, et al. Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass <em>Stipa tenacissima </em>[J]. Plant Ecology, 1999, 145: 327-339. |
[21] | Seghieri J, Carreau J, Boulain N, et al. Is water availability really the main environmental factor controlling the phenology of woody vegetation in the central Sahel [J]. Plant Ecology, 2012, 213: 861-870. |
[22] | Armond P A, Schreiber U, Bj?rkman O. Photosynthetic acclimation to temperature in desert shrub, <em>Larrea divaricata</em>: Ⅱ. Light harvesting efficiency and electron transport [J]. Plant Physiology, 1978, 61: 411-415. |
[23] | Xiong F S, Mueller E C, Day T A. Photosynthetic and respiratory acclimation and growth responses of Antarctic vascular plants to contrasting temperature regimes [J]. American Journal of Botany, 2000, 87(5): 700-710. |
[24] | Niu S L, Li Z, Xia J Y, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China [J]. Environmental and Experimental Botany, 2008, 63: 91-101. |
[25] | 任昱,卢琦,吴波,等. 白刺叶片气孔特征对人工模拟降雨的响应[J].生态学报, 2014, 34(21):6 101-6 106. |
[26] | 何季,吴波,鲍芳,等. 荒漠植物白刺对模拟增雨的光合响应机制[J]. 林业科学, 2015, 51(6): 27-35. |
[27] | 何季,吴波,贾子毅,等. 白刺光合生理特性对人工模拟增雨的响应[J]. 林业科学研究, 2013, 26(1): 58-64. |
[28] | 张赐成,韩广,关华德,等. 樟树和桂花树光合最适温度对环境温度改变的响应[J]. 生态学杂志, 2014, 33(11): 2 980-2 987. |
[29] | Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes [J]. Tree Physiology, 2012, 32: 219-231. |