|
- 2017
极端干旱对若尔盖高原泥炭地生态系统CO2通量的影响
|
Abstract:
摘要 采用野外控制试验和静态箱法,研究极端干旱事件对若尔盖高原泥炭地净生态系统二氧化碳交换(net ecosystem CO2 exchange, NEE)、生态系统呼吸(ecosystem respiration, Re)和总初级生产力(gross primary productivity, GPP)的影响及其响应机制。研究结果表明:极端干旱显著降低若尔盖高原泥炭地生态系统的NEE、Re和GPP(P<0.05),导致生态系统固碳能力减弱,而温度(空气温度和土壤温度)和土壤含水量(SWC)是若尔盖高原泥炭地碳收支变化的主要驱动因子。在对照处理(CK)和极端干旱处理(D)中,NEE、Re和GPP与空气温度呈显著正相关关系(P<0.05),极端干旱减弱NEE、Re和GPP对空气温度变化的敏感性。表层土壤温度与NEE、Re和GPP的相关性高于深层土壤温度与NEE、Re和GPP的相关性。分析5 cm土壤温度与NEE和Re的相关关系。极端干旱减弱NEE对5 cm土壤温度的敏感性,增强Re对5 cm土壤温度的敏感性。若尔盖高原泥炭地生态系统NEE、Re和GPP与土壤含水量显著正相关(P<0.05),而极端干旱对土壤全碳、全氮和有机碳的含量无显著影响(P > 0.05)。
[1] | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle [J]. Nature, 2013, 500(7 462): 287-295. |
[2] | IPCC. Climate change 2007: the physical science basis [M]. New York: Cambridge University Press. 2007. |
[3] | Jiang Z, Song J, Li L, et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection [J]. Climatic Change, 2012, 110(1/2): 385-401. |
[4] | Smith M D. The ecological role of climate extremes: current understanding and future prospects [J]. Journal of Ecology, 2011, 99(3): 651-655. |
[5] | Bridgham S D, Moore T R, Richardson C J, et al. Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. (2013) [J]. Landscape Ecology, 2014, 29(9): 1 481-1 485. |
[6] | Hao Y B, Cui X Y, Wang Y F, et al. Predominance of precipitation and temperature controls on ecosystem CO<sub>2</sub> exchange in Zoige alpine wetlands of Southwest China [J]. Wetlands, 2011, 31(2): 413-422. |
[7] | Zhou L, Zhou G S, Jia Q Y. Annual cycle of CO<sub>2</sub> exchange over a reed (<em>Phragmites australis</em>) wetland in Northeast China [J]. Aquatic Botany, 2009, 91(2): 91-98. |
[8] | Polsenaere P, Lamaud E, Lafon V, et al. Spatial and temporal CO<sub>2</sub> exchanges measured by eddy covariance over a temperate intertidal flat and their relationships to net ecosystem production [J]. Biogeosciences, 2012, 9(1): 249-268. |
[9] | Wassmann R, Aulakh M S. The role of rice plants in regulating mechanisms of methane missions [J]. Biology and Fertility of Soils, 2000, 31(1): 20-29. |
[10] | Pitchford J L, Wu C, Lin L, et al. Climate change effects on hydrology and ecology of wetlands in the mid-Atlantic highlands [J]. Wetlands, 2011, 32(1): 21-33. |
[11] | Mueller R C, Scudder C M, Porter M E, et al. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts [J]. Journal of Ecology, 2005, 93(6): 1 085-1 093. |
[12] | Schwalm C R, Williams C A, Schaefer K, et al. Assimilation exceeds respiration sensitivity to drought: a FluxNet synthesis [J]. Global Change Biology, 2010, 16(2): 657-670. |
[13] | Shi Z, Thomey M L, Mowll W, et al. Differential effects of extreme drought on production and respiration: synthesis and modeling analysis [J]. Biogeosciences, 2014, 11(3): 621-633. |
[14] | Kang X, Hao Y, Li C, et al. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China [J]. Journal of Soils and Sediments, 2011, 11(4): 562-576. |
[15] | Parton W J, Scurlock J M O, Ojima D S, et al. Impact of climate-change on grassland production and soil carbon worldwide [J]. Global Change Biology, 1995, 1(1): 13-22. |
[16] | Schimel D S, Kittel T G F, Parton W J. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology [J]. Tellus Series A-Dynamic Meteorology and Oceanography, 1991, 43(4): 188-203. |
[17] | 王东启,陈振楼,王军,等. 夏季长江口潮间带CH<sub>4</sub>、CO<sub>2</sub>和N<sub>2</sub>O通量特征[J]. 地球化学, 2007, 36(1): 78-88. |
[18] | Lefi E, Medrano H, Cifre J. Water uptake dynamics, photosynthesis and water use efficiency in field-grown <em>Medicago arborea</em> and <em>Medicago citrina</em> under prolonged Mediterranean drought conditions [J]. Annals of Applied Biology, 2004, 144(3): 299-307. |
[19] | Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function [J]. Ecology, 2007, 88(6): 1 386-1 394. |
[20] | Rajan N, Maas S J, Cui S. Extreme drought effects on carbon dynamics of a semiarid pasture [J]. Agronomy Journal, 2013, 105(6): 1 749. |
[21] | Huntingford C, Lowe J A, Booth B B B, et al. Contributions of carbon cycle uncertainty to future climate projection spread [J]. Tellus Series B-Chemical and Physical Meteorology, 2009, 61(2): 355-360. |
[22] | Frolking S, Roulet N T, Moore T R, et al. Modeling northern peatland decomposition and peat accumulation [J]. Ecosystems, 2001, 4(5): 479-498. |
[23] | Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003 [J]. Nature, 2005, 437(7 058): 529-533. |
[24] | van Straaten O, Veldkamp E, K?hler M, et al. Spatial and temporal effects of drought on soil CO<sub>2</sub> efflux in a cacao agroforestry system in Sulawesi, Indonesia [J]. Biogeosciences, 2010, 7(4): 1 223-1 235. |
[25] | van der Molen M K, Dolman A J, Ciais P, et al. Drought and ecosystem carbon cycling [J]. Agricultural and Forest Meteorology, 2011, 151(7): 765-773. |
[26] | 杨敏生,裴保华,朱之悌. 白杨双交杂种无性系抗旱性鉴定指标分析[J]. 林业科学, 2002, 38(6): 36-42. |
[27] | Bloor J M G, Bardgett R D. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(3): 193-204. |
[28] | Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157(3): 423-447. |
[29] | Mitsch W J, Bernal B, Nahlik A M, et al. Wetlands, carbon, and climate change [J]. Landscape Ecology, 2012, 28(4): 583-597. |
[30] | Jentsch A, Kreyling J, Elmer M, et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity [J]. Journal of Ecology, 2011, 99(3): 689-702. |
[31] | Smith M D, Knapp A K, Collins S L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change[J]. Ecology, 2009, 90(12): 3 279-3 289. |
[32] | Inubushi K, Furukawa Y, Hadi A, et al. Seasonal changes of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan [J]. Chemosphere, 2003, 52(3): 603-608. |
[33] | 王德宣. 若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究[J]. 湿地科学, 2010, 8(3): 220-224. |
[34] | 张晓云,吕宪国,顾海军. 若尔盖湿地面临的威胁、保护现状及对策分析[J]. 湿地科学, 2005, 3(4): 292-297. |
[35] | 刘红玉. 中国湿地资源特征、现状与生态安全[J]. 资源科学, 2005, 27(3): 54-60. |
[36] | 李珂,杨永兴,杨杨,等. 放牧胁迫下若尔盖高原沼泽退化特征及其影响因子[J]. 生态学报, 2011, 31(20): 5 956-5 969. |
[37] | Hao Y B, Kang X M, Cui X Y, et al. Verification of a threshold concept of ecologically effective precipitation pulse: from plant individuals to ecosystem [J]. Ecological Informatics, 2012, 12(11): 23-30. |
[38] | 孙晓新,牟长城,石兰英,等. 小兴安岭森林沼泽甲烷排放及其影响因子[J]. 植物生态学报, 2009, 33(3): 535-545. |
[39] | Mastepanov M, Sigsgaard C, Dlugokencky E J, et al. Large tundra methane burst during onset of freezing [J]. Nature, 2008, 456(7 222): 628-658. |
[40] | Miranda A C, Miranda H S, Lloyd J, et al. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes [J]. Plant Cell and Environment, 1997, 20(3): 315-328. |
[41] | Welker J M, Brown K B, Fahnestock J T. CO<sub>2</sub> flux in Arctic and alpine dry tundra: comparative field responses under ambient and experimentally warmed conditions [J]. Arctic Antarctic and Alpine Research, 1999, 31(3): 272-277. |
[42] | Zhang Y, Grant R F, Flanagan L B, et al. Modelling CO<sub>2</sub> and energy exchanges in a northern semiarid grassland using the carbon-and nitrogen-coupled Canadian Land Surface Scheme (C-CLASS) [J]. Ecological Modelling, 2005, 181(4): 591-614. |
[43] | Hunt J E, Kelliher F M, McSeveny T M, et al. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought [J]. Agricultural and Forest Meteorology, 2002, 111(1): 65-82. |
[44] | Waddington J M, Rotenberg P A, Warren F J. Peat CO<sub>2</sub> production in a natural and cutover peatland: Implications for restoration [J]. Biogeochemistry, 2001, 54(2): 115-130. |
[45] | Tian H, Hall C, Qi Y. Modeling primary productivity of the terrestrial biosphere in changing environments: toward a dynamic biosphere model [J]. Critical Reviews in Plant Sciences, 1998, 17(5): 541-557. |
[46] | Schimel D S, Parton W J, Kittel T G F, et al. Grassland biogeochemistry: links to atmospheric processes [J]. Climatic Change, 1990, 17(1): 13-25. |
[47] | Ding W, Cai Z, Tsuruta H, et al. Key factors affecting spatial variation of methane emissions from freshwater marshes [J]. Chemosphere, 2003, 51(3): 167-173. |
[48] | 刘乙,胡海波,刘准桥. 北亚热带次生栎林生态系统非生长季CO<sub>2</sub>通量特征[J]. 东北林业大学学报, 2013, 41(7): 22-27. |
[49] | 徐世晓,赵亮,李英年,等. 温度对青藏高原高寒灌丛CO<sub>2</sub>通量日变化的影响[J]. 冰川冻土, 2007, 29(5): 717-721. |
[50] | 宋长春,王毅勇. 湿地生态系统土壤温度对气温的响应特征及对CO<sub>2</sub>排放的影响[J]. 应用生态学报, 2006, 17(4): 4 625-4 629. |
[51] | Lafleur P M, Moore T R, Roulet N T, et al. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table [J]. Ecosystems, 2005, 8(6): 619-629. |
[52] | Updegraff K, Bridgham S D, Pastor J, et al. Response of CO<sub>2</sub> and CH<sub>4</sub> emissions from peatlands to warming and water table manipulation [J]. Ecological Applications, 2001, 11(2): 311-326. |