全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

极端干旱对若尔盖高原泥炭地生态系统CO2通量的影响
Effects of extreme drought on CO2 fluxes of Zoige alpine peatland

DOI: 10.7523/j.issn.2095-6134.2017.04.008

Keywords: 极端干旱,泥炭地,碳通量,温度,土壤含水量
extreme drought
,peatland,carbon fluxes,temperature,soil water content

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 采用野外控制试验和静态箱法,研究极端干旱事件对若尔盖高原泥炭地净生态系统二氧化碳交换(net ecosystem CO2 exchange, NEE)、生态系统呼吸(ecosystem respiration, Re)和总初级生产力(gross primary productivity, GPP)的影响及其响应机制。研究结果表明:极端干旱显著降低若尔盖高原泥炭地生态系统的NEE、Re和GPP(P<0.05),导致生态系统固碳能力减弱,而温度(空气温度和土壤温度)和土壤含水量(SWC)是若尔盖高原泥炭地碳收支变化的主要驱动因子。在对照处理(CK)和极端干旱处理(D)中,NEE、Re和GPP与空气温度呈显著正相关关系(P<0.05),极端干旱减弱NEE、Re和GPP对空气温度变化的敏感性。表层土壤温度与NEE、Re和GPP的相关性高于深层土壤温度与NEE、Re和GPP的相关性。分析5 cm土壤温度与NEE和Re的相关关系。极端干旱减弱NEE对5 cm土壤温度的敏感性,增强Re对5 cm土壤温度的敏感性。若尔盖高原泥炭地生态系统NEE、Re和GPP与土壤含水量显著正相关(P<0.05),而极端干旱对土壤全碳、全氮和有机碳的含量无显著影响(P > 0.05)。

References

[1]  Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle [J]. Nature, 2013, 500(7 462): 287-295.
[2]  IPCC. Climate change 2007: the physical science basis [M]. New York: Cambridge University Press. 2007.
[3]  Jiang Z, Song J, Li L, et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection [J]. Climatic Change, 2012, 110(1/2): 385-401.
[4]  Smith M D. The ecological role of climate extremes: current understanding and future prospects [J]. Journal of Ecology, 2011, 99(3): 651-655.
[5]  Bridgham S D, Moore T R, Richardson C J, et al. Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. (2013) [J]. Landscape Ecology, 2014, 29(9): 1 481-1 485.
[6]  Hao Y B, Cui X Y, Wang Y F, et al. Predominance of precipitation and temperature controls on ecosystem CO<sub>2</sub> exchange in Zoige alpine wetlands of Southwest China [J]. Wetlands, 2011, 31(2): 413-422.
[7]  Zhou L, Zhou G S, Jia Q Y. Annual cycle of CO<sub>2</sub> exchange over a reed (<em>Phragmites australis</em>) wetland in Northeast China [J]. Aquatic Botany, 2009, 91(2): 91-98.
[8]  Polsenaere P, Lamaud E, Lafon V, et al. Spatial and temporal CO<sub>2</sub> exchanges measured by eddy covariance over a temperate intertidal flat and their relationships to net ecosystem production [J]. Biogeosciences, 2012, 9(1): 249-268.
[9]  Wassmann R, Aulakh M S. The role of rice plants in regulating mechanisms of methane missions [J]. Biology and Fertility of Soils, 2000, 31(1): 20-29.
[10]  Pitchford J L, Wu C, Lin L, et al. Climate change effects on hydrology and ecology of wetlands in the mid-Atlantic highlands [J]. Wetlands, 2011, 32(1): 21-33.
[11]  Mueller R C, Scudder C M, Porter M E, et al. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts [J]. Journal of Ecology, 2005, 93(6): 1 085-1 093.
[12]  Schwalm C R, Williams C A, Schaefer K, et al. Assimilation exceeds respiration sensitivity to drought: a FluxNet synthesis [J]. Global Change Biology, 2010, 16(2): 657-670.
[13]  Shi Z, Thomey M L, Mowll W, et al. Differential effects of extreme drought on production and respiration: synthesis and modeling analysis [J]. Biogeosciences, 2014, 11(3): 621-633.
[14]  Kang X, Hao Y, Li C, et al. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China [J]. Journal of Soils and Sediments, 2011, 11(4): 562-576.
[15]  Parton W J, Scurlock J M O, Ojima D S, et al. Impact of climate-change on grassland production and soil carbon worldwide [J]. Global Change Biology, 1995, 1(1): 13-22.
[16]  Schimel D S, Kittel T G F, Parton W J. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology [J]. Tellus Series A-Dynamic Meteorology and Oceanography, 1991, 43(4): 188-203.
[17]  王东启,陈振楼,王军,等. 夏季长江口潮间带CH<sub>4</sub>、CO<sub>2</sub>和N<sub>2</sub>O通量特征[J]. 地球化学, 2007, 36(1): 78-88.
[18]  Lefi E, Medrano H, Cifre J. Water uptake dynamics, photosynthesis and water use efficiency in field-grown <em>Medicago arborea</em> and <em>Medicago citrina</em> under prolonged Mediterranean drought conditions [J]. Annals of Applied Biology, 2004, 144(3): 299-307.
[19]  Schimel J, Balser T C, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function [J]. Ecology, 2007, 88(6): 1 386-1 394.
[20]  Rajan N, Maas S J, Cui S. Extreme drought effects on carbon dynamics of a semiarid pasture [J]. Agronomy Journal, 2013, 105(6): 1 749.
[21]  Huntingford C, Lowe J A, Booth B B B, et al. Contributions of carbon cycle uncertainty to future climate projection spread [J]. Tellus Series B-Chemical and Physical Meteorology, 2009, 61(2): 355-360.
[22]  Frolking S, Roulet N T, Moore T R, et al. Modeling northern peatland decomposition and peat accumulation [J]. Ecosystems, 2001, 4(5): 479-498.
[23]  Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003 [J]. Nature, 2005, 437(7 058): 529-533.
[24]  van Straaten O, Veldkamp E, K?hler M, et al. Spatial and temporal effects of drought on soil CO<sub>2</sub> efflux in a cacao agroforestry system in Sulawesi, Indonesia [J]. Biogeosciences, 2010, 7(4): 1 223-1 235.
[25]  van der Molen M K, Dolman A J, Ciais P, et al. Drought and ecosystem carbon cycling [J]. Agricultural and Forest Meteorology, 2011, 151(7): 765-773.
[26]  杨敏生,裴保华,朱之悌. 白杨双交杂种无性系抗旱性鉴定指标分析[J]. 林业科学, 2002, 38(6): 36-42.
[27]  Bloor J M G, Bardgett R D. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(3): 193-204.
[28]  Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157(3): 423-447.
[29]  Mitsch W J, Bernal B, Nahlik A M, et al. Wetlands, carbon, and climate change [J]. Landscape Ecology, 2012, 28(4): 583-597.
[30]  Jentsch A, Kreyling J, Elmer M, et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity [J]. Journal of Ecology, 2011, 99(3): 689-702.
[31]  Smith M D, Knapp A K, Collins S L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change[J]. Ecology, 2009, 90(12): 3 279-3 289.
[32]  Inubushi K, Furukawa Y, Hadi A, et al. Seasonal changes of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan [J]. Chemosphere, 2003, 52(3): 603-608.
[33]  王德宣. 若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究[J]. 湿地科学, 2010, 8(3): 220-224.
[34]  张晓云,吕宪国,顾海军. 若尔盖湿地面临的威胁、保护现状及对策分析[J]. 湿地科学, 2005, 3(4): 292-297.
[35]  刘红玉. 中国湿地资源特征、现状与生态安全[J]. 资源科学, 2005, 27(3): 54-60.
[36]  李珂,杨永兴,杨杨,等. 放牧胁迫下若尔盖高原沼泽退化特征及其影响因子[J]. 生态学报, 2011, 31(20): 5 956-5 969.
[37]  Hao Y B, Kang X M, Cui X Y, et al. Verification of a threshold concept of ecologically effective precipitation pulse: from plant individuals to ecosystem [J]. Ecological Informatics, 2012, 12(11): 23-30.
[38]  孙晓新,牟长城,石兰英,等. 小兴安岭森林沼泽甲烷排放及其影响因子[J]. 植物生态学报, 2009, 33(3): 535-545.
[39]  Mastepanov M, Sigsgaard C, Dlugokencky E J, et al. Large tundra methane burst during onset of freezing [J]. Nature, 2008, 456(7 222): 628-658.
[40]  Miranda A C, Miranda H S, Lloyd J, et al. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes [J]. Plant Cell and Environment, 1997, 20(3): 315-328.
[41]  Welker J M, Brown K B, Fahnestock J T. CO<sub>2</sub> flux in Arctic and alpine dry tundra: comparative field responses under ambient and experimentally warmed conditions [J]. Arctic Antarctic and Alpine Research, 1999, 31(3): 272-277.
[42]  Zhang Y, Grant R F, Flanagan L B, et al. Modelling CO<sub>2</sub> and energy exchanges in a northern semiarid grassland using the carbon-and nitrogen-coupled Canadian Land Surface Scheme (C-CLASS) [J]. Ecological Modelling, 2005, 181(4): 591-614.
[43]  Hunt J E, Kelliher F M, McSeveny T M, et al. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought [J]. Agricultural and Forest Meteorology, 2002, 111(1): 65-82.
[44]  Waddington J M, Rotenberg P A, Warren F J. Peat CO<sub>2</sub> production in a natural and cutover peatland: Implications for restoration [J]. Biogeochemistry, 2001, 54(2): 115-130.
[45]  Tian H, Hall C, Qi Y. Modeling primary productivity of the terrestrial biosphere in changing environments: toward a dynamic biosphere model [J]. Critical Reviews in Plant Sciences, 1998, 17(5): 541-557.
[46]  Schimel D S, Parton W J, Kittel T G F, et al. Grassland biogeochemistry: links to atmospheric processes [J]. Climatic Change, 1990, 17(1): 13-25.
[47]  Ding W, Cai Z, Tsuruta H, et al. Key factors affecting spatial variation of methane emissions from freshwater marshes [J]. Chemosphere, 2003, 51(3): 167-173.
[48]  刘乙,胡海波,刘准桥. 北亚热带次生栎林生态系统非生长季CO<sub>2</sub>通量特征[J]. 东北林业大学学报, 2013, 41(7): 22-27.
[49]  徐世晓,赵亮,李英年,等. 温度对青藏高原高寒灌丛CO<sub>2</sub>通量日变化的影响[J]. 冰川冻土, 2007, 29(5): 717-721.
[50]  宋长春,王毅勇. 湿地生态系统土壤温度对气温的响应特征及对CO<sub>2</sub>排放的影响[J]. 应用生态学报, 2006, 17(4): 4 625-4 629.
[51]  Lafleur P M, Moore T R, Roulet N T, et al. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table [J]. Ecosystems, 2005, 8(6): 619-629.
[52]  Updegraff K, Bridgham S D, Pastor J, et al. Response of CO<sub>2</sub> and CH<sub>4</sub> emissions from peatlands to warming and water table manipulation [J]. Ecological Applications, 2001, 11(2): 311-326.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133