全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

两种灌溉系统对宁夏葡萄园土壤氧化亚氮排放的影响
Influences of two irrigation systems on soil N2O emissions from vineyards in Ningxia, China

DOI: 10.7523/j.issn.2095-6134.2016.02.006

Keywords: 滴灌,沟灌,排放因子,葡萄园,氧化亚氮
drip irrigation
,furrow irrigation,emission factor,vineyard,nitrous oxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 在宁夏回族自治区的葡萄种植园中,现多采用沟灌结合冲施肥的灌溉方法,部分种植园已施行滴灌结合随水施肥的灌溉方法.为探讨沟灌-冲施肥系统和滴灌-随水施肥系统对宁夏葡萄园土壤氧化亚氮(N2O)排放的影响,应用静态箱-气象色谱技术对该问题展开研究.结果表明:在2012年和2013年葡萄生长季中,较之于沟灌系统,滴灌系统可分别减少N2O年均排放量(18.24±2.79)kg/(hm-2 ·a-1)和(3.37±0.37)kg/(hm-2 ·a-1),约占沟灌系统排放量的61.1%和78.9%.在此基础之上计算排放系数,可估算出应用滴灌系统替换宁夏现有葡萄园中全部沟灌系统后,N2O减排总量分别约为2012年的704 264~770 756 kg和2013年的215 550~223 920 kg.可见,滴灌系统可以有效减少土壤N2O的排放损失,是一种更具N2O减排潜力的灌溉方式.

References

[1]  <p> Amos B, Arkebauer T J, Doran J W. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem[J]. Soil Science Society of America Journal, 2005, 69:387-395.
[2]  Turner N C. Plant water relations and irrigation management[J]. Agricultural Water Management, 1990, 17:59-73.
[3]  Stehfest E, Bouwman L. N<sub>2</sub>O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74:207-228.
[4]  Bouwman AF, Boumans LJM, Batjes NH. Emissions of N<sub>2</sub>O and NO from fertilized fields: summary of available measurement data[J]. Global Biogeochemical Cycles, 2002, 16:1 058.
[5]  Zhang Y J, Niu H S, Wang S P, et al. Application of the DNDC model to estimate N<sub>2</sub>O emissions under different types of irrigation in vineyards in Ningxia, China[J]. Agricultural Water Management, 2016, 163:295-304.
[6]  Wang R, Sun Q, Guo J, et al. Sandy wine vineyards soil moisture distribution in the east of Helan Mountain[J]. Journal of Irrigation and Drainage, 2013, 32:69-73 (in Chinese).
[7]  Su Z S, Wang L X. Observation and analysis on mountain climate in the semi-arid mountainous district in south of Ningxia[J]. Arid Meteorology, 2005, 23:17-20 (in Chinese).
[8]  Parkin TB, Kaspar TC. Temporal variability of soil carbon dioxide flux: effect of sampling frequency on cumulative carbon loss estimation[J]. Soil Science Society of America Journal, 2004, 68:1 234-1 241.
[9]  Sun Z G, Liu J S, Yang J S, et al. N<sub>2</sub>O flux characteristics and emission contributions of Calamagrostis angustifolia wetland during growth and non-growth seasons[J]. Actaprataculturae Sinica, 2009, 18:242-247 (in Chinese).
[10]  Jiang C S, Wang Y S, Zheng X H, et al. CH<sub>4</sub> and N<sub>2</sub>O emission from a winter-time flooded paddy field in a hilly area of Southwest China[J]. Chinese Journal of Applied Ecology, 2005, 16:539-544 (in Chinese).
[11]  Kennedy LT, Suddick CE, Six J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation[J]. Agricultural Ecosystem Environment, 2013, 170:16-27.</p>
[12]  Hou A X, Chen G X, Cleemput O V. Effect of different nitrogen fertilizers on N<sub>2</sub>O emission from soil[J]. Chinese Journal of Applied Ecology, 1998, 9:176-180 (in Chinese).
[13]  Feng K, Yin S X. Some soil factors of nitrous oxide emissions[J]. Progress in Soil Science, 1995, 23:35-42 (in Chinese).
[14]  Eichner M. Nitrous oxide emissions from fertilized soils: summary of available data[J]. Journal of Environmental Quality, 1990, 19:272-280.
[15]  Bouwman A F. Direct emission of nitrous oxide from agricultural soils[J]. Nutrient Cycling in Agroecosystems, 1996, 46:53-70.
[16]  Scheer C R, Wassmann, Kienzler K. Nitrous oxide emissions from fertilized, irrigated cotton (Gossypiumhirsutum L.) in the Aral Sea Basin, Uzbekistan: influences of nitrogen applications and irrigation practices[J]. Soil Biology Biochemistry, 2008, 40:290-301.
[17]  Maharjan B, Venterea R, Rosen C. Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching[J]. Agronomy Journal, 2014, 106:703-714.
[18]  Smart D R, Schwass E, Lakso A, et al. Grapevine rooting patterns: a comprehensive analysis and a review[J]. American Journal of Enology and Viticulture, 2006, 57:89-104.
[19]  Steenwerth K, Belina K M. Cover crops and cultivation: impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem[J]. Applied Soil Ecology, 2008, 40:370-380.
[20]  Dong Y H, Ouyang Z, Li Y S, et al. Influence of different fertilisation on CO<sub>2</sub> and N<sub>2</sub>O fluxes from agricultural soil[J]. Soil and Fertilizer Science in China, 2007, 4:34-39 (in Chinese).
[21]  Dai Z H, Trettin C C, Li C S, et al. Effect of assessment scale on spatial and temporal variations in CH<sub>4</sub>, CO<sub>2</sub>, and N<sub>2</sub>O fluxes in a forested wetland[J]. Water Air Soil Pollution, 2012, 223:253-265.
[22]  Lee X, Wu H W, Sigler J, et al. Rapid and transient response of soil respiration to rain[J]. Global Change Biology, 2004, 10:1 017-1 026.
[23]  Li X L, Xu H, Cai Z C. Effect of water management on nitrous oxide emission from rice paddy field: a review[J]. Soils, 2009, 41:1-7 (in Chinese).
[24]  Weitz A M, Linder E, Frolking S, et al. N<sub>2</sub>O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability[J]. Soil Biology Biochemistry, 2001, 33:1 077-1 093.
[25]  Eggleston H S, Buendia L, Miwa K, et al. IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme[R]. Japan: IGES, 2006.
[26]  Mosier A R, Hutchinson G L. Nitrous Oxide Emissions from Cropped Fields[J]. Journal of Environmental Quality, 1981, 10:169-173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133