全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

颗粒-流体密度比对两相流动不稳定性影响的格子-Boltzmann方法模拟
Lattice-Boltzmann simulation of the effect of particle-fluid density ratio on instability of two-phase flow

DOI: 10.7523/j.issn.2095-6134.2017.02.012

Keywords: 格子-Boltzmann方法,颗粒-流体密度比,流动不稳定性
lattice-Boltzmann method
,particle-fluid density ratio,flow instability

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 采用格子-Boltzmann方法模拟周期性边界计算域内的颗粒流化。计算采用的流化系统Archimedes数为1 432,对应于颗粒终端Reynolds数为30。研究模拟颗粒浓度为25% ,颗粒-流体密度比为2~1 000时,密度比对流体-颗粒流动不稳定性的影响。密度比的范围对应由液固到气固的两相流动。颗粒与颗粒之间的碰撞采用弹性碰撞。研究获得颗粒平均速度、速度方差、偏度及峰度随密度比变化的规律。结合结构因子的分析,因密度比变化使颗粒-流体流动由稳定转变为不稳定的过程中颗粒速度特性变化与聚团形成的关系被确定,也确定了不稳定流动产生时所对应的密度比范围。

References

[1]  Ladd A J C, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics, 2001, 104:1191-1251.
[2]  Yin X L, Koch D L. Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers[J]. Physics of Fluids, 2007, 19:093302, 1-15.
[3]  Yang N, Wang W, Li J H, CFD Simulation of concurrent-up gas-solid flow in circulation fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96:71-80.
[4]  Liu G D, Wang P, Wang S, et al. Numerical simulation of flow behavior of liquid and particles in liquid-solid risers with multi scale interfacial drag method[J]. Advanced Powder Technology, 2013, 24(2):537-548.
[5]  Hill R J, Koch D L, Ladd A J C. The first effects of fluid inertia on flows in ordered and random arrays of spheres[J]. Journal of Fluid Mechanics, 2001, 449:213-241.
[6]  Mitrano P P, Zenk J R, Benyahia S, et al. Kinetic-theory predictions of clustering instabilities in Granular flows:beyond the small-Knudsen-number regime[J]. Journal of Fluid Mechanics, 2014, 738 R2:1-12.
[7]  William D F, Mitrano P P, Li X Q, et al. Validation of a new kinetic theory based two-fluid model for monodisperse gas-solid particulate flows[C]//Japan-US Chemical Engineering, 2015.
[8]  郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2009.
[9]  Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part I:Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271:285-310.
[10]  Derksen J J, Sundaresan S. Direct numerical simulations of dense suspensions:wave instabilities in liquid-fluidized beds[J]. Journal of Fluid Mechanics, 2007, 587:303-336.
[11]  Wen C Y, Yu Y H. Mechanics of fluidization[J]. American Institute of Chemical Engineers Symposium Series, 1966,62:100-111.
[12]  Beetstra R, Van der Hoef M A, Kuipers J A M. A lattice-boltzmann simulation study of the drag coefficient of clusters of spheres[J]. Computers & Fluids, 2006, 35:966-970.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133