全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

两相光滑粒子流体动力学方法在动床溃坝问题中的应用
Application of two-phase smoothed particle hydrodynamics method to dam break over movable bed

DOI: 10.7523/j.issn.2095-6134.2017.05.013

Keywords: 光滑粒子流体动力学,动床,溃坝,两相,非牛顿流体
smoothed particle hydrodynamics
,movable bed,dam break,two-phase,non-Newtonian fluid

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 光滑粒子流体动力学(SPH)方法采用离散分布的粒子作为离散工具,借助粒子和核函数将场变量及其导数以某种加权求和的方式进行计算,使得该方法更适于处理包含大位移、动边界和自由表面的问题。本文在分析动床条件下的溃坝问题时,以Drunker-Prager准则作为底床颗粒物的侵蚀启动判断条件。满足该条件而发生启动的颗粒物将以非牛顿流体的特征发生运动,即以Herschel-Bulkley-Papanastasiou模型来描述;否则,认为底床颗粒物未启动而保持静止状态。为进一步改进计算结果,采用基于体积比的两相SPH方法描述固液混合体的动力学特征,并基于固液混合颗粒流的动力学特征对混合黏度的计算进行改进。基于上述原理,分析动床条件下的溃坝问题,并将数值计算结果与已有的实验数据进行对比,证明本文提出的混合黏度计算公式改进了数值计算结果。

References

[1]  Rodriguez-Paz M X, Bonet J. A corrected smooth particle hydrodynamics method for the simulation of debris flows[J]. Numerical Methods for Partial Differential Equations, 2004,20(1):140-163.
[2]  Frigaard I A, Nouar C. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005,127(127):1-26.
[3]  Papanastasiou T C. Flows of Materials with Yield[J]. Journal of Rheology, 1987,31(5):385-404.
[4]  Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J]. Advances in Water Resources, 2003,26(7):787-800.
[5]  Laigle D, Lachamp P, Naaim M. SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures[J]. Computational Geosciences, 2007,11(4):297-306.
[6]  Manenti S, Sibilla S, Gallati M, et al. SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow[J]. Journal of Hydraulic Engineering, 2012,138(3):272-284.
[7]  Razavitoosi S L, Ayyoubzadeh S A, Valizadeh A. Two-phase SPH modelling of waves caused by dam break over a movable bed[J]. International Journal of Sediment Research, 2014,29(3):344-356.
[8]  Ulrich C, Leonardi M, Rung T. Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems[J]. Ocean Engineering, 2013,64:109-121.
[9]  Ran Q, Tong J, Shao S, et al. Incompressible SPH scour model for movable bed dam break flows[J]. Advances in Water Resources, 2015,82(8):39-50.
[10]  Shakibaeinia A, Jin Y-C. A mesh-free particle model for simulation of mobile-bed dam break[J]. Advances in Water Resources, 2011,34(6):794-807.
[11]  Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994,110(2):399-406.
[12]  Armanini A, Larcher M, Nucci E, et al. Submerged granular channel flows driven by gravity[J]. Advances in Water Resources, 2014,63(2):1-10.
[13]  Fourtakas G, Rogers B D. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)[J]. Advances in Water Resources, 2016,92(6):186-199.
[14]  Xu X, Ouyang J, Yang B, et al. SPH simulations of three-dimensional non-Newtonian free surface flows[J]. Computer Methods in Applied Mechanics and Engineering, 2013,256(4):101-116.
[15]  Fourtakas G, Rogers B D, Laurence D R. Modelling sediment resuspension in industrial tanks using SPH[J]. La Houille Blanche, 2013,(2):39-45.
[16]  Fang J, Parriaux A, Rentschler M, et al. Improved SPH methods for simulating free surface flows of viscous fluids[J]. Applied Numerical Mathematics, 2009,59(2):251-271.
[17]  Chen W-F, Mizuno E. Nonlinear analysis in soil mechanics[M]. Amsterdam:Elsevier, 1990.
[18]  Gotoh H, Fredsoe Jr. Lagrangian two-phase flow model of the settling behavior of fine sediment dumped into water//International Conference on Coastal Engineering, 2001:3906-3919.
[19]  Vand V. Viscosity of Solutions and Suspensions. I. Theory[J]. The Journal of Physical and Colloid Chemistry, 1948,52(2):277-299.
[20]  Spinewine B. Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. Belgium:Université catholique de Louvain PhD Thesis, 2005.
[21]  Leimkuhler B J, Reich S, Skeel R D. Mathematical approaches to biomolecular structure and dynamics[M]. New York:Springer,1996:161-185.
[22]  Molteni D, Colagrossi A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH[J]. Computer Physics Communications, 2009,180(6):861-872.
[23]  Gingold R A, Monaghan J J. Smoothed particle hydrodynamics:theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977,181(3):375-389.
[24]  Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977,82:1013-1024.
[25]  Morris J, Monaghan J. A switch to reduce SPH viscosity[J]. Journal of Computational Physics, 1997,136(1):41-50.
[26]  Bagnold R A. Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1954,225(1160):49-63.
[27]  Savage S B. The mechanics of rapid granular flows[J]. Advances in Applied Mechanics, 1984,24(87):289-366.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133