全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

CoFe1.9Nb0.1O4结构与磁电性能
Structure and magnetic and electronic properties of CoFe1.9Nb0.1O4

DOI: 10.7523/j.issn.2095-6134.2015.01.008

Keywords: 铁氧体,多铁,介电,磁性,Nb掺杂
ferrite
,multiferroic,dielectric,magnetic property,Nb-doping

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 通过固相反应法合成CoFe1.9Nb0.1O4物相,Rietveld精修表明该材料具有立方尖晶石结构,空间群为Fd-3m.Nb主要占据尖晶石的B位,部分取代Fe,这一取代对材料的磁电性能产生显著影响.与CoFe2O4相比,CoFe1.9Nb0.1O4的铁磁性减弱,而介电性能提高,表现出明显的介电弛豫行为.Nb掺杂导致Fe离子变价是造成极化增大和介电弛豫的主要原因.由于材料的漏导过大,无法通过P-E曲线直接证明材料的铁电性.

References

[1]  Tokura Y, Tomioka Y. Colossal magnetoresistive manganites[J]. Journal of Magnetism and Magnetic Materials, 1999, 200: 1-23.
[2]  Tokunaga Y, Furukawa N, Sakai H, et al. Composite domain walls in a multiferroic perovskite ferrite[J]. Nature Materials, 2009, 8: 558-562.
[3]  Kitamura M, Ohkubo I, Kubota M, et al. Ferromagnetic properties of epitaxial La<sub>2</sub>NiMnO<sub>6</sub> thin films grown by pulsed laser deposition[J]. Applied Physics Letters, 2009, 94: 132 506.
[4]  Slonczewski J C. Origin of magnetic anisotropy in cobalt-substituted magnetite [J]. Physical Review, 1958, 110: 1 341-1 348.
[5]  Chinnasamy C N, Jeyadevan B, Shinoda K, et al. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe<sub>2</sub>O<sub>4</sub> nanoparticles[J]. Applied Physics Letters, 2003, 83: 2 862-2 864.
[6]  Kimura T, Lawes G, Ramirez A P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures[J]. Physical Review Letters, 2005, 94: 137 201.
[7]  Ishiwata S, Taguchi Y, Murakawa H, et al. Low-magnetic-field control of electric polarization vector in a helimagnet[J]. Science, 2008, 319: 1 643-1 646.
[8]  Taniguchi K, Abe N, Ohtani S, et al. Ferroelectric polarization reversal by a magnetic field in multiferroic y-type hexaferrite Ba<sub>2</sub>Mg<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub>[J]. Applied Physics Express ,2008, 1: 031 301.
[9]  Wu X, Cai W, Kan Y, et al. Multiferroic properties of CoFe<sub>2</sub>O<sub>4</sub>/PbZr<sub>0</sub><sub>.</sub><sub>52</sub>Ti<sub>0</sub><sub>.</sub><sub>48</sub>O<sub>3</sub> composite ceramics[J]. Ferroelectrics, 2009, 380: 48-55.
[10]  Neel L. Proprieties magnetiques des ferrites-ferrimagnetisme et antiferromagnetisme[J]. Annales De Physique, 1948, 3: 137-198.
[11]  Ramana C V, Kolekar Y D, Kamala Bharathi K, et al. Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite[J]. Journal of Applied Physics, 2013, 114: 183 907.
[12]  Ponpandian N, Balaya P, Narayanasamy A. Electrical conductivity and dielectric behaviour of nanocrystalline NiFe<sub>2</sub>O<sub>4</sub> spinel[J]. Journal of Physics-Condensed Matter, 2002, 14: 3 221-3 237.</p>
[13]  Mahato R N, Sethupathi K, Sankaranarayanan V. Colossal magnetoresistance in the double perovskite oxide La<sub>2</sub>CoMnO<sub>6</sub>[J]. Journal of Applied Physics, 2010, 107: 09d714.
[14]  Lezaic M, Spaldin N A. High-temperature multiferroicity and strong magnetocrystalline anisotropy in 3d-5d double perovskites[J]. Physical Review B, 2011, 83: 024 410.
[15]  Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO<sub>3</sub>-CoFe<sub>2</sub>O<sub>4</sub> nanostructures[J]. Science, 2004, 303: 661-663.
[16]  Dwivedi G D, Tseng K F, Chan C L, et al. Signature of ferroelectricity in magnetically ordered Mo-doped CoFe<sub>2</sub>O<sub>4</sub>[J]. Physical Review B, 2010, 82:134 428.
[17]  Dwivedi G D, Joshi A G, Kevin H, et al. Existence of the multiferroic property at room temperature in Ti doped CoFe<sub>2</sub>O<sub>4</sub>[J]. Solid State Communications, 2012, 152: 360-363.
[18]  Fennie C J. Ferroelectrically induced weak ferromagnetism by design[J]. Physical Review Letters, 2008, 100: 167 203.
[19]  Giri A K, Kirkpatrick E M, Moongkhamklang P, et al. Photomagnetism and structure in cobalt ferrite nanoparticles[J]. Applied Physics Letters, 2002, 80: 2 341-2 343.
[20]  Zheng H, Straub F, Zhan Q, et al. Self-Assembled growth of BiFeO<sub>3</sub>-CoFe<sub>2</sub>O<sub>4 </sub>nanostructures[J]. Advanced Materials, 2006, 18: 2 747-2 752.
[21]  Oezguer U, Alivov Y, Morkoc H. Microwave ferrites, part 1: fundamental properties[J]. Journal of Materials Science-Materials in Electronics, 2009, 20: 789-834.
[22]  Sudakar C, Subbanna G N, Kutty T R N. Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2003, 263: 253-268.
[23]  Kitagawa Y, Hiraoka Y, Honda, T, et al. Low-field magnetoelectric effect at room temperature[J]. Nature Materials, 2010, 10: 797-802.
[24]  Wang L, Wang D, Cao Q, et al. Electric control of magnetism at room temperature[J]. Scientific Reports, 2012, 2: 223.
[25]  Chopdekar R V, Suzuki Y. Magnetoelectric coupling in epitaxial CoFe<sub>2</sub>O<sub>4</sub> on BaTiO<sub>3</sub>[J]. Applied Physics Letters, 2006, 89: 182 506.
[26]  <p> Hill N A. Why are there so few magnetic ferroelectrics?[J]. Journal of Physical Chemistry B, 2000, 104:6 694-6 709.
[27]  Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426: 55-58.
[28]  Chinnasamy C N, Jeyadevan B, Perales-Perez O, et al. Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe<sub>2</sub>O<sub>4</sub> nanoparticles[J]. Magnetics, IEEE Transactions, 2002, 38: 2 640-2 642.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133