全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

地幔条件下碳酸钙熔体的密度与压缩性
Densities and compressibilities of calcium-carbonate melts under the mantle condition

DOI: 10.7523/j.issn.2095-6134.2015.03.010

Keywords: 碳酸盐熔体,第一性原理分子动力学,密度,压缩性
carbonate melts
,first-principle molecular dynamics,density,compressibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 碳酸盐熔体在地球内部碳循环过程中扮演重要角色,但目前对碳酸盐熔体的研究局限于低温低压条件,且主要以富钾钠组分的碱性碳酸盐熔体为主,对于高压条件下碳酸盐熔体的研究还非常不足.通过大规模第一性原理分子动力学模拟,获得地幔条件下CaCO3熔体的状态方程.研究表明,碳酸钙熔体表现出显著的可压缩性,其压缩因子大于文石及典型硅酸盐熔体,因此其密度随压力升高而快速增大;当压力超过10 GPa时,碳酸盐熔体的密度大于钠长石熔体的密度;当压力超过37 GPa时,其密度会大于金刚石的密度;地幔条件下碳酸钙熔体的密度始终小于晶体(文石及后文石)的密度,但其密度差随压力升高而显著降低.碳酸钙熔体的这一特性,对探讨其在地幔中的分布和探讨超深金刚石的形成等具有启示意义.

References

[1]  Gaillard F, Malki M, Iacono-Marziano G, et al. Carbonatite melts and electrical conductivity in the asthenosphere[J]. Science, 2008,322:1 363-1 365.
[2]  Litvin Y, Spivak A, Solopova N, et al. On origin of lower-mantle diamonds and their primary inclusions [J]. Physics of the Earth and Planetary Interiors, 2014,228:176-185
[3]  Brenker F E, Vollmer C, Vincze L, et al. Carbonates from the lower part of transition zone or even the lower mantle[J]. Earth and Planetary Science Letters, 2007,260:1-9.
[4]  Koishi T, Kawase S, Tamaki S, et al. Computer simulation of molten Li<sub>2</sub>CO<sub>3</sub>-K<sub>2</sub>CO<sub>3</sub> mixtures[J]. Journal of the Physical Society of Japan, 2000,69:3291-3296.
[5]  Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6: 15-50.
[6]  Zhang Z G, Stixrude L, Brodholt J. Elastic properties of MgSiO<sub>3</sub>-perov-skite under lower mantle conditions and the composition of the deep Earth[J]. Earth and Planetary Science Letters,2013, 379: 1-12.
[7]  Irving A, Wyllie P. Melting relationsh-ips in CaO-CO<sub>2</sub> and MgO-CO<sub>2</sub> to 36 kilobars with comments on CO<sub>2</sub> in the mantle[J]. Earth and Planetary Science Letters, 1973,20:220-225.
[8]  Dziewonski A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary interiors, 1981, 25:297-356.
[9]  Cooper A, Gittins J, Tuttle O. The system Na<sub>2</sub>CO<sub>3</sub>-K<sub>2</sub>CO<sub>3</sub>-CaCO<sub>3</sub> at 1 kilobar and its significance in carbonaatite petrogenesis[J]. American Journal of Science, 1975,275:534-560.
[10]  Ghosh S, Ohtani E, Litasov K, et al. Stability of carbonated magmas at the base of the Earth's upper mantle[J]. Geophysical Research Letters, 2007,34(22)L22312:1-5.
[11]  Anderson O. The Earth's core and the phase diagram of iron[J]. Philosophical transactions of the royal society of London. Series A, Mathematical and Physical Sciences,1982,306:21-35.
[12]  Shcheka S S, Wiedenbeck M, Frost D J, et al. Carbon solubility in mantle minerals[J]. Earth and Planetary Science Letters, 2006, 245:730-742.
[13]  Seifert R. Compressibility of volatile-bearing magmatic liquids[D]. ETH Zurich, 2013.</p>
[14]  <p> Yang X M, Yang X Y, Zheng Y F, et al. A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China[J]. Mineralogy and Petrology,2003, 78:93-110.
[15]  Eggler D H. Does CO<sub>2</sub> cause partial melting in the low-velocity layer of the mantle?[J] Geology, 1976a,4:69-72.
[16]  Spivak A, Litvin Y A, Ovsyannikov S, et al. Stability and breakdown of Ca<sup>13</sup>CO<sub>3</sub> melt associated with formation of <sup>13</sup>C-diamond in static high pressure experiments up to 43 GPa and 3900 K[J]. Journal of Solid State Chemistry, 2012,191:102-106.
[17]  Kaminsky F. Mineralogy of the lower mantle: a review of 'super-deep' mineral inclusions in diamond[J]. Earth-Science Reviews, 2012,110:127-147.
[18]  Spedding P, Mills R. Trace-ion diffusion in molten alkali-carbonates [J]. Journal of the Electrochemical Society, 1965,112: 594-599.
[19]  Costa M F. Molecular dynamics of molten Li<sub>2</sub>CO<sub>3</sub>-K<sub>2</sub>CO<sub>3</sub>[J]. Journal of Molecular Liquids, 2008,138: 61-68.
[20]  Bobrovsky S V, Gogolev V M, Zamysh-lyacv B V, et al. The study of thermal decomposition influence on the spallation velocity for strong shock waves in solids[J]. Problemy Razrabotki Poleznykh Iskopaemyh, 1976, 3:49-57 (in Russian, see English translation in Soviet Mining Science).
[21]  Suzuki A, Ohtani E, Kato T. Density and thermal expansion of a peridotite melt at high pressure[J]. Physics of the earth and planetary interiors, 1998,107:53-61.
[22]  Arima M, Kozai Y, Akaishi M. Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions[J]. Geology, 2002, 30:691-694.
[23]  Eggler D H. Does CO<sub>2</sub> cause partial melting in the low-velocity layer of the mantle? Comment and reply-reply[J]. Geology, 1976b,4:787-789.
[24]  Presnall C, Gudfinnsson G H. Carbonate-rich melts in the oceanic low-velocity zone and deep mantle[J]. Special Papers-Geological Society of America, 2005,388:207.
[25]  Wyllie P J, Huang W L. Carbonation and melting reactions in the system CaO-MgO-SiO<sub>2</sub>-CO<sub>2</sub> at mantle pressures with geophysical and petrological applications[J]. Contrib Mineral Petrol, 1976,54:79-107.
[26]  Dasgupta R, Mallik A, Tsuno K, et al. Carbon-dioxide-rich silicate melt in the Earth's upper mantle[J]. Nature, 2013,493:211-215.
[27]  Spivak A, Dubrovinsky L, Litvin Y A. Origin of ultra-deep diamonds: chemical interaction of ca-carbonate and the earth's lower mantle minerals[J]. EGU General Assembly Conference Abstracts, 2012, 531.
[28]  Kaminsky F V, Wirth R, Schreiber A. Carbonatitic inclusions in deep Mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association[J]. The Canadian Mineralogist, 2013,51:669-688.
[29]  Pal'Yanov N, Sokol A, Borzdov M, et al. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamondsin the Earth's mantle: an experimental study[J]. Lithos, 2002b,60: 145-159.
[30]  Dobson D P, Jones A P, Rabe R, et al. In-situ measurement of viscosity and density of carbonate melts at high pressure[J]. Earth and Planetary Science Letters, 1996,143:207-215.
[31]  Liu Q, Lange R A. New density measurements on carbonate liquids and the partial molar volume of the CaCO<sub>3</sub> component[J]. Contrib Mineral Petrol, 2003,146:370-381.
[32]  Spedding P, Mills R. Tracer diffusion measurements in mixtures of molten alkali carbonates[J]. Journal of The Electrochemical Society, 1966,113:599-603.
[33]  Wolff J. Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite-silicate magma chambers[J]. Geological Magazine, 1994,131:145-153.
[34]  Genge M J, Price G D, Jones A P. Molecular dynamics simulations of CaCO<sub>3</sub> melts to mantle pressures and temperatures: implications for carbonatite magmas[J]. Earth and Planetary Science Letters, 1995,131:225-238.
[35]  Brooker R, Hamilton D. Three-liquid immiscibility and the origin of carbonatites[J]. Nature, 1990, 346:459-462.
[36]  Ono S, Kikegawa T, Ohishi Y, et al. Post-aragonite phase transformation in CaCO<sub>3</sub> at 40 GPa[J]. American Mineralogist,2005,90: 667-671.
[37]  Kerley I. Equations of state for calcite minerals. I. theoretical model for dry calcium carbonate[J]. International Journal of High Pressure Research, 1989, 2: 29-47.
[38]  Kushiro I. Viscosity and structural changes of albite (NaAlS<sub>3</sub>O<sub>8</sub>) melt at high pressures[J]. Earth and Planetary Science Letters, 1978,41: 87-90.
[39]  Seifert R, Malfait W J, Lerch P, et al. Partial molar volume and compressibility of dissolved CO<sub>2</sub> in glasses with magmatic compositions [J]. Chemical Geology,2013, 358: 119-130.
[40]  Suzuki A, Ohtani E, Funakoshi K, et al. Viscosity of albite melt at high pressure and high temperature[J]. Physics and Chemistry of Minerals, 2002, 29:159-165.
[41]  Martinez I, Zhang J Z, Reeder R J. In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite [J]. American Mineralogist, 1996, 81: 611-624.
[42]  Liu Q, Tenner T J, Lange R A. Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K<sub>2</sub>CO<sub>3</sub> to 3.2 GPa[J]. Contrib Mineral Petrol, 2007, 153:55-66.
[43]  Guo X. Density and compressibility of FeO-bearing silicate melt: relevance to magma behavior in the earth . University of Michigan, 2013.
[44]  Stixrude L, Karki B. Structure and freezing of MgSiO<sub>3</sub> liquid in Earth's lower mantle[J]. Science, 2005,310: 297-299.
[45]  Pal'Yanov Y N, Sokol A G, Borzdov Y M, et al. Diamond formation through carbonate-silicate interaction [J]. American Mineralogist,2002, 87:1 009-1 013.
[46]  Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling[J]. Nature, 2011,472:209-212.
[47]  Kaminsky F, Wirth R, Matsyuk S, et al. Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas[J]. Mineral Mag-azine, 2009,73:797-816.
[48]  Bailey D. Carbonate magmas[J]. Journal of the Geological Society, 1993,150:637-651.
[49]  Viladkar S. Evolution of calcio-carbo-natite magma: evidence from the s?vite and alvikite association in the amba dongar complex, India [M]. Geochemistry-Earth's System Processes, 2012, 20:485-501.
[50]  Kogarko L, Henderson C, Pacheco H. Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle[J]. Contrib Mineral Petrol, 1995, 121:267-274.
[51]  Zhang Z G, Liu Z R, High pressure equation of state for molten CaCO<sub>3</sub> from first principles simulations[J]. Chinese Journal of Geochemistry, 2014, Accepted.
[52]  Martinez I, Deutsch A, Schrer U, et al. Shock recovery experiments on dolomite and thermodynamical calculations of impact induced decarbonation[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1995,100:15 465-15 476.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133