|
- 2017
马里亚纳海沟Challenger Deep的岩石圈流变结构与动力学分析
|
Abstract:
摘要 马里亚纳海沟是西太平洋板块边缘沟-弧-盆体系构造演化的关键地区,其南端的Challenger Deep不仅是地球表面最深点,也是马里亚纳海沟、马里亚纳岛弧、马里亚纳海槽、西马里亚纳洋脊和帕里西维拉海盆的构造汇聚点。开展岩石流变结构与动力学过程研究对于认识Challenger Deep的形成演化具有重要的科学意义。利用综合地球物理资料,通过对重、磁数据的计算分析,研究马里亚纳沟-弧-槽-盆系统的等效黏滞系数和岩石圈强度等流变学特征。利用地震资料,勾绘海沟之下贝尼奥夫带随深度变化的特征以及陡变形态。计算结果表明:对应马里亚纳海沟-岛弧-海槽系统,自由空气重力异常向东凸出,形成弧型异常区;区内异常表现为串珠状线性特征,异常值中间高,两侧低。不同深度岩石圈累积强度比值表明,海沟南北两侧地壳上硬下软,海沟中部地壳上软下硬。在给定应变速率条件下计算的等效黏滞系数东高西低,说明西侧构造体地壳比东侧构造体地壳更容易变形。Challenger Deep岩石圈强度较大,等效黏滞系数较高,具有上硬下软的流变学特征,为板块俯冲在该区的弯曲、撕裂与快速翻转提供了重要条件。地震与重力剖面分析表明,Challenger Deep处的岩石圈累积应力强度和有效粘滞系数条件,可以使马里亚纳海沟俯冲带在重力作用下弯曲、开裂,或部分向南翻转、变陡。
[1] | Bibee L D, Shor G G, Lu R S. Inter-arc spreading in the Mariana Trough[J]. Marine Geology, 1980, 35(1-3): 183-197. |
[2] | Taylor B. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992, 126: 627-651. |
[3] | Seno T, Stein S, Gripp A E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data[J]. Journal of Geophysical Research Part B: Solid Earth, 1993, 98(B10): 17 941-17 948. |
[4] | Stern R J, Fouch M J, Klemperer S. An overview of the Izu-Bonin-Mariana subduction factory[J]. Inside the Subduction Factory Geophysical Monograph Series, 2003, 138: 175-222. |
[5] | Fryer P, Becker N, Appelgate B, et al. Why is the Challenger Deep so deep?[J]. Earth and Planetary Science Letters, 2003, 211(3): 259-269. |
[6] | Hussong D M, Uyeda S. Tectonic processes and the history of the Mariana Arc: a synthesis of the results of Deep Sea Drilling Project Leg-60[J]. Initial Reports of the Deep Sea Drilling Project, 1982, 60(3): 909-929. |
[7] | Honsho C, Tamaki K, Fujimoto H. Bathymetric and geomagnetic survey of the Mariana Trough 16°N[J]. Jamstec Journal of Deep Sea Research, 1997, 13(2): 21-29. |
[8] | Karig D E, Anderson R N, Bibee L D. Characteristics of back arc spreading in the Mariana Trough[J]. Journal of Geophysical Research Part B: Solid Earth, 1978, 83(B3): 1 213-1 226. |
[9] | Martinez F, Fryer P, Becker N. Geophysical characteristics of the Southern Mariana Trough, 11°50'N-13°40'N[J]. Journal of Geophysical Research Part B: Solid Earth, 2000, 105(B7): 16 591-16 608. |
[10] | Fryer P, Sujimoto H, Sekine M, et al. Volcanoes of the southwestern extension of the active Mariana Island Arc: new swath-mapping and geochemical studies[J]. The Island Arc, 1998, 7(3): 596-607. |
[11] | Sherman H B, Taylor B, Christopher J M, et al. Early arc volcanism and the ophiolite problem: a perspective from drilling the western Pacific[J]. Geophysical Monograph Series in Active Margins and Marginal Basins of the Western Pacific, 1995, 88: 1-30. |
[12] | Cosca M A, Arculus R J, Pearce J A, et al. <sup>40</sup>Ar/<sup>39</sup>Ar and K-Ar age constraints for the inception and early evolution of the Izu-Bonin-Mariana arc system[J]. The Island Arc, 1998, 7(3): 579-595. |
[13] | 刘方兰, 曲佳. 马里亚纳海沟水深探测及"挑战者深渊"海底地形特征[J]. 海洋地质前沿, 2003, 29(4): 7-11. |
[14] | Oakley A J, Taylor B, Moore G F. Sedimentary, volcanic, and tectonic processes of the central Mariana Arc: Mariana Trough back-arc basin formation and the West Mariana Ridge[J]. G-Cubed: Geochemistry Geophysics Geosystems, 2009, 10(8): 1-29. |
[15] | 林长松, 王冠荣. 马里亚纳岛弧系的垂向旋转运动与海槽的形成[J]. 海洋学报, 1992, 14(5): 86-94. |
[16] | Karig D E. Structural history of the Mariana island arc system[J]. Geological Society of America Bulletin, 1971, 82(2): 323-344. |
[17] | Sinton J B, Hussong D M. Crustal structure of a short length transform fault in the central Mariana Trough[J]. Geophysical Monograph Series in the Tectonic and Geologic Evolution of the Southeast Asian Seas and Islands: Part 2, 1983, 27: 236-254. |
[18] | Stuben D, Neumann T, Taibi N E, et al. Segmentation of the southern Mariana back-arc spreading center[J]. The Island Arc, 1998, 7(3): 513-524. |
[19] | Kato T, Beavan J, Matsushima T, et al. Geodetic evidence of back-arc spreading in the Mariana Trough[J]. Geophysical Research Letters, 2003, 30(12): 1 625. |
[20] | Fryer P, Martinez F, Becker N, et al. A subduction factory laboratory: tectonics of the southern Mariana convergent margin[J]. EOS, 2001, 82: 1 187. |
[21] | 高玲举, 张健, 董淼,等. 川西高原重磁异常特征与构造背景分析[J]. 地球物理学报, 2015, 58(8): 2 996-3 008. |
[22] | 孙玉军, 董树文, 范桃园,等. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报, 2013, 56(9): 2 936-2 946. |
[23] | 邢健. 重力2.5维多界面反演方法及其在俯冲带研究中的应用:以日本-IBM 俯冲带为例[D]. 北京: 中国科学院地质与地球物理研究所, 2016. |
[24] | Gvirtzman Z, Stern R J. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling[J]. Tectonics, 2004, 23(2):1-15. |
[25] | Gudmundsson O, Sambridge M. A regionalized upper mantle (RUM) seismic model[J]. Journal of Geophysical Research Atmospheres, 1998, 103(B4): 7 121-7 136. |
[26] | Karig D E, Ranken B. Marine geology of the forearc region, southern Mariana Island arc[J]. Geophysical Monograph Series in the Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 1983, 27: 266-280. |
[27] | Takahashi N, Kodaira S, Tatsumi Y, et al. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system[J]. Journal of Geophysical Research, 2008, 113(B1): B1104. |
[28] | Hilst R V D, Engdahl R, Spakman W, et al. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs[J]. Nature, 1991, 353(6339): 37-43. |
[29] | Dvorkin J, Nur A, Mavko G, et al. Narrow subducting slabs and the origin of backarc basins[J]. Tectonophysics, 1993, 227(1-4): 63-79. |
[30] | Nur A, Dvorkin J, Mavko G, et al. Speculations on the origin and fate of backarc basins[J]. Annals of Geophysics, 1991, 36(2): 155-163. |
[31] | Gvirtzman Z, Nur A. Plate detachment, asthenosphere upwelling, and topography across subduction zones[J]. Geology, 1999, 27(6): 563-566. |