|
- 2015
储存尿液电化学法脱氮的影响因素
|
Abstract:
摘要 生活污水中约 80% 的氨氮来自尿液,收集尿液并脱氮处理可极大减轻生活污水处理负荷.本实验用Ti/RuO2-TiO2 电极作为阳极,不锈钢板作为阴极,在有机玻璃电解槽中研究考察电流密度(20~100 mA/cm2)、储存尿液初始 pH(9~12) 以及 NaCl 投加量(4~16 g/L) 对储存尿液(250 mL)的脱氮效果.结果表明,最佳脱氮工艺参数为:电流密度 80 mA/cm2, 初始 pH 在 11 左右,NaCl 投加量为 8 g/L,电解时间达到 270 min.在此最优化条件下,氨氮和总氮的去除率分别是91.83%和88.34%;处理 1 L 尿液消耗 0.311 kW·h 电能.可见,该方法具有快速、低能耗、高效优点,在源分离尿液氮处理方面具有应用前景.
[1] | Pronk W, Palmquist H, Biebow M, et al. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine[J]. Water Research, 2006,40(7):1405-1412. |
[2] | Jenssen P D, Etnier C. Ecological engineering for wastewater and organic waste treatment in urban areas:an overview[C]//proceedings of conference on water saving strategies in urban environment. Vienna, 1996:1-10. |
[3] | Amstutz V, Katsaounis A, Kapalka A, et al. Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO<sub>2</sub> electrodes[J]. Journal of Applied Electrochemistry, 2012,42(9):787-795. |
[4] | Raut A S. Electrochemical disinfection of human urine for water-free and additive-free toilets using boron-doped diamond electrodes[J]. The Electrochemical Society, 2013,52(17):1-11. |
[5] | Cunci L, Rao C V, Velez C, et al. Graphene-supported Pt, Ir, and Pt-Ir nanoparticles as electrocatalysts for the oxidation of ammonia[J]. Electrocatalysis,2013,4(1):61-69. |
[6] | 顾域峰, 郑向勇, 叶海仁, 等. 钛电极电催化氧化去除源分离尿液中氮的研究[J]. 水处理技术, 2010,36(8):41-44. |
[7] | Larsen T A, Gujer W. Separate management of anthropogenic nutrient solutions (human urine)[J]. Water Sci Technol. 1996, 34(3/4):87-94. |
[8] | 常园园. 尿液和城市废水应用于微藻的培养[D]. 杭州:浙江大学, 2013. |
[9] | 陈金銮. 氨氮的电化学氧化技术及其应用研究[D]. 北京:清华大学, 2008. |
[10] | <p> 吴召富. 南四湖流域农村生活污水现状调查与处理工艺研究[D]. 青岛:中国海洋大学, 2013. |
[11] | 孟宪超,胡正义,刘小宁,等. 小便器尿液源头分离及其磷资源回收关键技术的研究[J]. 中国科学院大学学报, 2014,31(1):61-66. |
[12] | Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics in source-separated urine[J]. Water Research, 2007,41(5):977-984. |
[13] | 张琳,李子富,张扬,等. 吹脱法回收源分离尿液中氨氮的试验研究[J]. 环境工程, 2014(3):38-42. |
[14] | 袁芳,范洪波,代晋国. 电化学氧化法处理高浓度氨氮废水的实验研究[J]. 东莞理工学院学报, 2011,18(5):99-102. |
[15] | 王程远,胡翔,李毅,等. 电化学氧化法处理高浓度氨氮废水的研究[J]. 工业用水与废水,2008,39(6):59-61. |
[16] | 温国期,胡正义,刘小宁,等. 改性沸石对氨氮去除效果与机理研究[J]. 安徽农业科学, 2013,41(13):5878-5881, 5890. |
[17] | Lin S H, Wu C L. Electrochemical removal of nitrite and ammonia for aquaculture[J]. Water Research,1996,30(3):715-721. |
[18] | ?ngela C S. Bezerra, Sá E L D, Nart F C. In situ vibrational study of the initial steps during urea electrochemical oxidation[J]. J Phys Chem B,1997,101(33):6443-6449. |
[19] | Kai M Udert. Estimating the precipitation potential in urine-collecting systems[J]. Water Research,2003,37:2667-2677. |
[20] | Hernlem B J. Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell[J]. Water Research, 2005,39(11):2245-2252. |
[21] | 彭雨生. 山地小城镇污水处理厂设计及运行效果研究[D]. 重庆:重庆大学, 2013. |
[22] | 谢家峰. 山西省典型污水处理厂能耗分析与节能措施研究[D]. 太原:太原理工大学, 2013.</p> |