|
- 2015
对鲁棒线性规划保守性的进一步讨论
|
Abstract:
摘要 保守性是衡量鲁棒优化模型好坏的重要指标,也是研究鲁棒优化方法的一个关键问题.在先前关于鲁棒线性优化保守性的研究中,我们发现,线性规划最优解中非零分量的数目k是刻画鲁棒线性规划模型保守性的一个重要参数.本文通过分析基解是鲁棒线性规划问题最优解的概率,给出了参数k的概率分布和数学期望.
[1] | Hillier F S, Lieberman G J. Introduction to operations research[M].9th ed. San Francisco:Mc Graw Hill-Higher Education, 2010:107-109. |
[2] | Adler I, Karp R M, Shamir R. A simplex variant solving an m×d linear program in O(min(m<sup>2</sup>,d<sup>2</sup>)) expected number of pivot steps[J]. Journal of Complexity, 1987, 3(4):372-387.</p> |
[3] | El Ghaoui L, Oustry F, Lebret H. Robust solutions to uncertain semidefinite programs[J]. SIAM Journal on Optimization, 1998, 9(1):33-52. |
[4] | <p> Liu P F, Yang W G, Guo T D. A discussion on the conservatism of robust linear optimization problems[J/OL]. Eprints for the optimization community. (2014-10)[2015-01-10]. http://www.optimization-online.org/DB_HTML/2014/10/4598.html. |
[5] | Bertsimas D, Sim M. The price of robustness[J]. Operations Research, 2004, 52(1):35-53. |
[6] | Ben-Tal A, Nemirovski A. Robust convex optimization[J]. Mathematics of Operations Research, 1998, 23(4):769-805. |
[7] | EI-Ghaoui L, Lebret H. Robust solutions to least-square problems to uncertain data matrices[J]. Sima Journal on Matrix Analysis and Applications, 1997, 18:1035-1064. |
[8] | Soyster A L. Technical note-convex programming with set-inclusive constraints and applications to inexact linearprogramming[J]. Operations Research, 1973, 21(5):1154-1157. |
[9] | Ben-Tal A, Nemirovski A. Robust solutions of uncertain linear programs[J]. Operations Research Letters, 1999, 25(1):1-13. |