全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

水稻低Cd累积相关基因RNA干扰载体及根特异性表达载体的构建
Construction of RNAi and root-specific expression vectors of genes related to low Cd accumulation in rice

DOI: 10.7523/j.issn.2095-6134.2015.02.006

Keywords: 水稻,RNA干扰,组织特异性表达,低镉累积,多基因转化,载体构建
rice
,RNA interference,tissue-specific expression,low-Cd accumulation,co-transformation,vector construction

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 Cd极易被水稻等作物吸收并伴随食物链在人体内累积, 严重威胁人类健康.基于水稻Cd累积机制的现有研究, 克隆与水稻Cd累积相关的基因OsLCD和OsHMA 3, 并克隆一个维管组织特异性表达的启动子OsMTP 11 P, 利用Gateway 技术及传统酶切、连接方法, 成功构建适用于水稻等单子叶植物农杆菌转化的RNA 干扰载体pRI-M-LCD和根特异性表达载体pCB2022-H.期望通过这2个载体共转化水稻, 使大量的Cd扣留在根细胞的液泡中, 限制Cd向地上部分及籽粒中的转运, 从而实现Cd在水稻籽粒中的低累积.

References

[1]  Ueno D, Koyama E, Yamaji N, et al. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan[J]. Journal of Experimental Botany, 2011, 62(7):2 265-2 272.
[2]  Karfowski W M, Hirsch A M. The overexpression of an alfalfa<em> RING-H2</em> gene induces pleiotropic effects on plant growth and development[J]. Plant Molecular Biology, 2003, 52(1):121-133.
[3]  Kuiper H A, Kleter G A, Noteborn H P, et al. Assessment of the food safety issues related to genetically modified foods[J]. The Plant Journal, 2001, 27(6):503-528.
[4]  Ye X, Al-Babili S, Kl?ti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000, 287(5 451):303-305.
[5]  Delhaize E, Gruber B D, Pittman J K, et al. A role for the <em>AtMTP11</em> gene of <em>Arabidopsis</em> in manganese transport and tolerance[J]. The Plant Journal, 2007, 51:198-210.
[6]  中国科学院华南植物园. 一种水稻重金属诱导型组织特异性启子MTP11P 及其应用:中国, 201110249214.9 . 2012-12-26.
[7]  Hartley J L, Temple G F, Brasch M A, et al. DNA cloning using in vitro site-specific recombination[J]. Genome Research, 2000, 10(11):1 788-1 795.
[8]  Bushman W, Thompson J, Vargas L, et al. Control of directionality in Lambda site specific recombination[J]. Science, 1985, 230(4 782):906-911.
[9]  Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination[J]. Annual Review of Biochemistry, 1989, 58:913-949.
[10]  Chen S B, Songkumarn P, Liu J L, et al. A versatile zero background T-vector system for gene cloning and functional genomics[J]. Plant Physiology, 2009, 150(3):1 111-1 121.
[11]  Tian H, Baxter I R, Lahner B, et al. Arabidopsis<em> </em>NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance[J]. The Plant Cell, 2010, 22:3 963-3 979.</p>
[12]  张玉秀,于飞,张媛雅,等. 植物对重金属镉的吸收转运和累积机制[J]. 中国生态农业学报,2008,16(5):1 317-1 321.
[13]  Tanaka K, Fujimaki S, Fujiwara T, et al. Cadmium concentrations in the phloem sap of rice plants (<em>Oryza saliva</em> L.) treated with a nutrient solution containing cadmium (Environment)[J]. Soil Science and Plant Nutrition, 2003, 49(2):311-313.
[14]  张标金,张祥喜,罗广林. 与植物镉吸收转运相关的主要基因家族[J]. 基因组学与应用生物学,2013,32(1):127-134.
[15]  Baxter I, Tchieu J, Sussman M R, et al. Genomic comparison of P-type ATPase ion pumps in <em>Arabidopsis </em>and rice[J]. Plant Physiology, 2003, 132(2):618-628.
[16]  Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38):16 500-16 505.
[17]  Shimo H, Ishimaru Y, An G, et al. <em>Low cadmium</em> (<em>LCD</em>), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15):5 727-5 734.
[18]  Conner A J, Glare T R, Nap J P. The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment[J]. The Plant Journal, 2003, 33(1):19-46.
[19]  Christou P, Swain W F. Cotransformation frequencies of foreign genes in soybean cell cultures[J]. Theoretical and Applied Genetics, 1990, 79:337-341.
[20]  <p> 顾继光,林秋奇,胡韧,等. 土壤-植物系统中重金属污染的治理途径及其研究展望[J]. 土壤通报,2005,36(1):128-133.
[21]  杨世勇,谢建春,刘登义. 镉的生物学效应及植物的耐性机制[J]. 生物学教学,2000,25(9):6-7.
[22]  Wu Q, Chen L, Wang G. Differences on Cd uptake and accumulation among rice cultivars and its mechanism[J]. Acta Ecologica Sinica, 1999, 1(1):104-107.
[23]  Miyadate H, Adachi S, Hiraizumi A, et al. OsHMA3, a P<sub>1</sub><sub>B</sub><sub>-</sub><sub>type</sub> of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011,189(1):190-199.
[24]  陶刚, 刘作易, 朱英, 等. 水稻玉米基因组DNA 提取方法的改进[J]. 贵州农业科学,2004,32(6):21-22.
[25]  Wei S Q, Jarvis N. Modelling of cadium transport in soil-crop system[J]. Pedosphere, 2000, 10(1):1-9.
[26]  刘刊,王波,权俊娇,等. 土壤重金属污染修复研究进展[J]. 北方园艺,2012,(22):189-194.
[27]  Chen Q J, Zhou H M, Chen J, et al. Using a modified TA cloning method to creat entry clones[J]. Analytical Biochemistry, 2006, 358(1):120-125.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133