全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于协同表示的目标跟踪算法
Algorithm of object-tracking based on collaborative representation

DOI: 10.7523/j.issn.2095-6134.2016.01.020

Keywords: 目标跟踪,协同表示,l1范数,观测似然函数
object tracking
,collaborative representation,l1 norm,observation likelihood function

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 提出一种基于协同表示的新的目标跟踪算法.在贝叶斯框架下,采用基于重构误差的观测似然函数和考虑遮挡的模型更新机制设计一个鲁棒的跟踪器.用l1范数来建模重构误差以更好地容忍奇异值,同时用协同表示对编码系数进行约束.实验结果表明,和其他算法相比,本文算法能够战胜遮挡、尺度变化、光照变化、背景混乱等干扰因素,具有较高的准确度和鲁棒性.

References

[1]  Mei X, Ling H B. Robust visual tracking using L1 minimization [C]// IEEE international Conference on Computer Vision. Kyoto, Japan. 2009: 1 436-1 443.
[2]  Bao C, Wu Y, Ling H, et al. Real time robust L1 tracker using accelerated proximal gradient approach [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providenc, RI, USA. 2012:1 830-1 837.
[3]  Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transaction on Image Processing, 2014, 23(5): 2 356-2 368.
[4]  <p> Wang D, Lu H C. On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization[J]. Signal Processing, 2013,93: 1 608-1 623.
[5]  Wang D, Lu H C. Incremental orthogonal projective non-negative matrix factorization and its applications [C]// IEEE International Conference on Image Processing. Brussels, Belgium. 2011: 2 117-2 120.
[6]  Zhang K, Zhang L, Yang M. Fast compressive tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2 002-2 015.
[7]  Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model [C]// International Conference on Computer Visioan and Pattern Recognition, Providenc, Ri, USA. 2012:1 822-1 829.
[8]  Wang D, Lu H C, Yang M H. Least Soft-threshold Squares Tracking [C]// International Conference on Computer Vision and Pattern Recognition. Portland, Orego, 2013:2 371-2 378.
[9]  Zhang L, Yang M, Feng X, et al. Collaborative representation based classification for face recognition [R]. arXiv: 1204.2358.
[10]  Ross D, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008,77(3):125-141.
[11]  Kalal J, Matas J, Mikolajczyk K. P-N learning:bootstrapping binary classifiers by structural constraints [C]//IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, 2010:49-56.
[12]  Kwon J, Lee K M. Visual tracking decomposition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Francisco, California, 2010:1 269-1 276.
[13]  Babenko B, Yang M H, Belongle S. Visual tracking with online multiple instance learning [C]//IEEE Conference on Computer Vision and Pattern Recognition. Florida, 2009: 983-990.
[14]  Adam A, Riviin E, Shimshoni I. Robust fragments-based tracking using the integral histogram [C]// IEEE Conference on Computer Vision and Pattern Recognition. New York. 2006: 798-805.</p>
[15]  Wright J, Yang A Y, Ganesh A. Robust representation for face recognition via sparse representation[J]. IEEE Trans Pattern and Machine Intell, 2009,31(2):210-227.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133