全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

边界元算法在计算地球动力学中的应用
Applications of boundary-element method in computational geodynamics

DOI: 10.7523/j.issn.2095-6134.2016.01.014

Keywords: 边界元算法,边界积分方程,格林函数,地球动力学
boundary-element method
,boundary-integral equation,Green' s function,geodynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对斯托克斯流体动力学问题, 详细介绍了其边界积分方程、多种边界条件下的格林函数构造、边界元算法的求解误差分析等基本方法和理论. 并介绍了该方法在板块俯冲动力学及俯冲带地震波各向异性方面的应用, 充分表明使用边界元算法可以灵活精确地处理地球动力学中的许多用其他方法难以解决的问题.

References

[1]  Li Z H, Di Leo J F, Ribe N M. Subduction-induced mantle flow, finite strain and seismic anisotropy: Numerical modeling [J]. Journal of Geophysical Research: Solid Earth, 2014, 119: 5052-5076.
[2]  Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow [M]. New York: Cambridge University Press, 1992: 259.
[3]  Ascoli E P, Dandy D S, Leal L G. Buoyancy-driven motion of a deformable drop toward a planar wall at low Reynolds number [J]. Journal of Fluid Mechanics, 1990, 213: 287-311.
[4]  Brenner H. The slow motion of a sphere through a viscous fluid towards a plane surface [J]. Chemical Engineering Science, 1961, 16: 242-251.</p>
[5]  <p> Jaswon M A. Integral equation methods in potential theory, Part 1 [J]. Proceedings of the Royal Society of London Series A, 1963, 275: 23-32.
[6]  Liron N, Mochon S. Stokes flow for a stokeslet between two parallel flat plates [J]. Journal of Engineering Mathematics, 1976, 10: 287-303.
[7]  Pozrikidis C. The deformation of a liquid drop moving normal to a plane wall [J]. Journal of Fluid Mechanics, 1990, 215: 331-363.
[8]  Manga M, Stone H A. Buoyancy-driven interaction between two deformable viscous drops [J]. Journal of Fluid Mechanics, 1993, 256: 647-683.
[9]  Fraysse V, Giraud L, Gratton S, et al. A set of GMRES routines for real and complex arithmetics on high performance computers . CERFACS Technical Report TR/PA/03/3, 2001: 20.
[10]  Batchelor G K. An introduction to fluid dynamics [M]. New York: Cambridge University Press, 1967: 615.
[11]  Cruse T A, Rizzo F J. A direct formulation and numerical solution of the general transient elastodynamic problem, part 1 [J]. Journal of Mathematical Analysis and Applications, 1968, 22(1): 244-259.
[12]  Pozrikidis C. A practical guide to boundary element methods with the software library BEMLIB [M]. Boca Raton: CRC Press, 2002: 440.
[13]  Rjasanow S, Steinbach O. The fast solution of boundary integral equations [M]. New York: Springer US, 2007: 284.
[14]  Liu Y. Fast multipole boundary element method-Theory and applications in engineering [M]. Cambridge: Cambridge University Press, 2009: 254.
[15]  Li Z H, Ribe N M. Dynamics of free subduction from 3-D boundary-element modeling [J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B06408.
[16]  Blake J R. A note on the image system for a stokeslet in a no-slip boundary [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1971, 70: 303-310.
[17]  Symm G T. Integral equation methods in potential theory, Part 2 [J]. Proceedings of Royal Society of London Series A, 1963, 275: 33-46.
[18]  Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics [J]. Quarterly of Applied Mathematics, 1967, 25: 83-95.
[19]  Cruse T A, Rizzo F J. A direct formulation and numerical solution of the general transient elastodynamic problem, Part 2 [J]. Journal of Mathematical Analysis and Applications, 1968, 22(2): 341-355.
[20]  Brebbia C A. The boundary element method for engineers [M]. London: Pentech Press, 1978: 189.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133