全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

半定规划的齐次不可行内点算法
A homogeneous infeasible-interior-point algorithm for semidefinite programming

DOI: 10.7523/j.issn.2095-6134.2016.03.006

Keywords: 齐次不可行内点算法,单调互补问题,半定规划
homogeneous infeasible-starting interior-point algorithm
,monotone complementarity problem,semidefinite programming

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为降低半定规划(SDP)问题的迭代复杂度,并且有更好的数值实验结果,提出一种新的宽邻域上的齐次不可行内点算法.半定规划的KKT条件是单调互补问题(MCP),通过构造齐次模型(HMCP)以及提出新的宽邻域来解这个齐次模型,得到半定规划问题的最优解.这种算法容易判定原问题是否可行.在NT方向,证明迭代点在新的宽邻域内是收敛的,且迭代复杂度为O(√nlogL),其中n是SDP问题的维数,L=Tr(X0S0)/ε,其中ε是需要的精度,(X0,S0)是迭代起始点.这个复杂度比一般的半定规划不可行算法的迭代复杂度低.提供了数值实验,证明此算法比其他不可行算法具有更好的数值实验结果.

References

[1]  杨喜美. 对称锥规划的宽邻域内点算法研究 . 西安: 西安电子科技大学, 2014.
[2]  Todd M J, Toh K C, T R H. On the Nesterov-Todd direction in semidefinite programming[J]. Siam Journal on Optimization, 1997, 8(3):769-796.</p>
[3]  <p> Liu H, Yang X, Liu C. A new wide neighborhood primal-dual infeasible-interior-point method for symmetric cone programming[J]. Journal of Optimization Theory and Applications, 2013, 158(3):796-815.
[4]  Jin S, Ariyawansa K A, Zhu Y. Homogeneous self-dual algorithms for stochastic semidefinite programming[J]. Journal of Optimization Theory and Applications, 2012, 155(3):1 073-1 083.
[5]  Rangarajan B K. Polynomial convergence of infeasible-interior-point methods over symmetric cones[J]. Siam Journal on Optimization, 2006, 16(4):1 211-1 229.
[6]  Andersen E D, Ye Y. On a homogeneous algorithm for the monotone complementarity problem[J]. Mathematical Programming, 1995, 84(2): 375-399.
[7]  Cottle R W, Pang J S, Stone R E. The linear complementarity problem[J]. Computer Science and Scientific Computing, 1992, 1: 132-133.
[8]  Güler O. Existence of interior points and interior paths in nonlinear monotone complementarity problems[J]. Mathematics of Operations Research, 1993, 18(1):128-147.
[9]  Kojima M, Mizuno S, Yoshise A. A convex property of monotone complementarity problems . Department of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan:1993.
[10]  韩继业, 修乃华, 戚厚铎. 非线性互补理论与算法[M]. 上海:上海科学技术出版社, 2006.
[11]  Klerk E. Aspects of semidefinite programming[M]. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers, 2004.
[12]  Zhang Y. On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming[J]. Siam Journal on Optimization, 1998, 8(2):365-386.
[13]  Shida M, Shindoh S, Kojima M. Existence and uniqueness of search directions in interior-point algorithms for the SDP and the monotone SDLCP[J]. Siam Journal on Optimization, 1998, 8(2): 387-396.
[14]  Ai W, Zhang S. An O( n L) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP[J]. Siam Journal on Optimization, 2005, 16(2): 400-417.
[15]  Li Y, Terlaky T. A new class of large neighborhood path-following interior point algorithms for semidefinite optimization with O n <em>log</em> Tr(X<sup>0</sup>S<sup>0</sup>) ε iteration complexity[J]. Siam Journal on Optimization, 2010, 20(6):2 853-2 875.
[16]  刘新泽. 对称锥互补问题若干内点算法的复杂性研究 . 西安: 西安电子科技大学, 2014.
[17]  刘长河. 锥规划中若干内点算法的复杂性研究 .西安: 西安电子科技大学, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133