|
- 2017
基于CMIP5模型结果的中国陆地生态系统未来碳利用效率变化趋势分析
|
Abstract:
摘要 为研究气候变化条件下中国陆地生态系统未来碳利用效率(CUE)变化趋势及其响应,选取第5次耦合模式比较计划12种模型,分析在RCP2.6、RCP4.5和RCP8.5这3种典型排放情景下,2006—2100年中国陆地生态系统总体的CUE变化趋势及其与温度和降水的关系。研究发现,不同模型模拟的中国陆地生态系统总体的CUE变化范围在0.332~0.617,在此期间所有模型模拟结果的平均值保持在0.5左右,其幅度变化较小,随时间呈现略微降低的趋势,并随着辐射强迫水平的增加(从RCP2.6到RCP4.5再到RCP8.5),降低趋势有所加强。未来气候变化背景下,中国陆地生态系统总体的CUE与降水基本呈正相关关系,而与温度基本呈负相关关系。
[1] | Chapin F S, Matson P A, Mooney H A, et al. Principles of terrestrial ecosystem ecology[M]. New York: Springer-Verlag Inc, 2002. |
[2] | Ryan M G, Lavigne M B, Gower S T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate[J].Journal of Geophysical Research Atmospheres,1997,102(D24): 28 871-28 883. |
[3] | Curtis P S, Vogel C S, Gough C M, et al. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999-2003[J]. New Phytologist, 2005, 167(2): 437-456. |
[4] | Kwona Y, Larsen C P S. Effects of forest type and environmental factors on forest carbon use efficiency assessed using MODIS and FIA data across the eastern USA[J]. International Journal of Remote Sensing, 2013, 34(23): 8 425-8 448. |
[5] | Tan Z, Zhang Y, Yu G, et al. Carbon balance of a primary tropical seasonal rain forest[J]. Journal of Geophysical Research: Atmosphere, 2010, 115(13): 411-454. |
[6] | Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7 282): 747-756. |
[7] | 王绍武, 赵宗慈, 罗勇, 等. 新一代温室气体排放情景[J]. 气候变化研究进展, 2012, 8(4): 305-307. |
[8] | 喻彦, 徐建华, 周双喜, 等. 近50年西双版纳最高最低气温对气候变化的响应[J]. 气象科技, 2003, 41(2):334-338. |
[9] | Delucia E H, Drake J E, Thomas R B, et al. Forest carbon use efficiency: is respiration a constant fraction of gross primaryproduction? [J]. GlobalChange Biology, 2007, 13(6): 1 157-1 167. |
[10] | 吴建国. 降雨量和温度变化对麻花艽叶片光合作用及相关生理参数的影响[J]. 中国草地学报, 2010, 32(5):73-79. |
[11] | Smith W K, Hinckley T M. Resource physiology of conifers[M]. New York: Academic Press,1995. |
[12] | Campioli M, Gielen B, Gockede M, et al. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest[J]. Biogeoscience, 2011, 8(9): 2 481-2 492. |
[13] | 陈光水, 杨玉盛, 高人, 等. 杉木林年龄序列地下碳分配变化[J]. 植物生态学报, 2008, 32(6): 1 285-1 293. |
[14] | Waring R H, Landsberg J J, Williams M. Net primary production of forests: a constant fraction of gross primary production?[J]. Tree Physiology, 1998, 18(2): 129-134. |
[15] | Gifford R M. The global carbon cycle: a viewpoint on the missing sink[J]. Australian Journal of Plant Physiology, 1994, 21(1): 1-15. |
[16] | Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 2003,8(7): 343-351. |
[17] | Metcalfe D B, Meir P, Aragao L E O C, et al. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon[J]. New Phytologist, 2010, 187(3): 608-621. |
[18] | Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience,2010, 3(5):336-340. |
[19] | Amthor J S. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later[J]. Annals of Botany, 2000, 86(1): 1-20. |
[20] | Lersel M W V. Carbon use efficiency depends on growth respiration, maintenance respiration, and relative growth rate: a case study with lettuce[J]. Plant Cell and Environment, 2003,26(9): 1 441-1 449. |
[21] | Zhang Y J, Yu G R, Yang J, et al. Climate-driven global changes in carbon use efficiency[J]. Global Ecology and Biogeography, 2014,23(2): 144-155. |
[22] | 朱万泽. 森林碳利用效率研究进展[J]. 植物生态学报, 2013, 37(11): 1 043-1 058. |
[23] | 郭彦, 董文杰, 任福民, 等. CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较[J]. 气候变化研究进展, 2013, 9(3): 181-186. |
[24] | Gifford R M. plant respiration in productivity models: conceptualisation, representation and issue for globalterrestrial carbon-cycle research[J]. Functional Plant Biology, 2003,30(2): 171-186. |
[25] | Havelka U D, Ackerson R C, Boyle M G, et al. CO<sub>2</sub>-enrichment effects on soybean physiology. I. Effects of long-term CO<sub>2</sub>exposure[J]. Crop Science,1984, 24(6): 1 146-1 150. |
[26] | 张其德, 卢从明, 匡廷云. 大气CO<sub>2</sub>浓度升高对光合作用的影响[J]. 植物学通报, 1992, 9(4): 18-23. |
[27] | Zhang Y J, Xu M, Chen H, et al. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate[J]. Global Ecology and Biogeography, 2009, 18(3): 280-290. |
[28] | Dewar R C, Medlyn B E, Mcmurtrie R E. A mechanistic analysis of lightandcarbon use efficiencies[J]. Plant Cell and Environment, 1998, 21(6): 573-588. |
[29] | Levy P E, Cannell M G R, Friend A D. Modelling the impact of future changes in climate, CO<sub>2</sub> concentration and land use on natural ecosystems and the terrestrial carbon sink[J]. Global Environmental Change, 2004, 14(1): 21-30. |
[30] | Potter C S, Randerson J T, Field C B, et al. Terrestrial Ecosystem Production: a process model based on global satellite and surface data[J]. Global Biogeo-chemical Cycles, 1993, 7(4): 811-841. |
[31] | Choudhury B J. Carbon use efficiency, and net primary productivity of terrestrial vegetation[J]. Advances in Space Research, 2000, 26(7): 1 105-1 108. |