全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

氧化铝赤泥堆场植物多样性
Plant species diversity in bauxite residue disposal areas

DOI: 10.7523/j.issn.2095-6134.2017.05.004

Keywords: 赤泥堆场,耐性植物,优势种,多样性指数,生态修复
bauxite residue disposal area
,tolerant plant,dominant species,diversity index,ecological restoration

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 赤泥堆场是氧化铝工业生产过程产生的强碱性固体废弃物的堆存场所,是一种特殊的退化生态系统。选取华北地区3个典型赤泥堆场,开展植被调查及物种多样性研究,发现赤泥堆放20年后,出现先锋植物入侵现象。调查区域仅25种植物,隶属10科22属,其中禾本科和菊科植物占植物物种数的52%;草本植物占植物物种数的88%,其中一年生植物占物种数的56%;赤泥堆场植被稀疏、单位面积物种极少、物种丰富度和多样性较低,群落组成和结构简单,植物群落类型主要为虎尾草+狗牙根群落、虫实+狗尾草群落。狗牙根具有生长快、分布广、耐盐碱、适应性强等特点,可作为赤泥堆场植被重建先锋物种。研究结果为赤泥堆场生态修复和耐性植物的筛选提供了科学依据。

References

[1]  Power G, Grafe M, Klauber C. Bauxite residue issues:I. current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2):33-45.
[2]  Xue S G, Kong X F, Zhu F, et al. Proposal for management and alkalinity transformation of bauxite residue in China[J]. Environmental Science and Pollution Research, 2016, 23(13):12822-12834.
[3]  Vangelatos I, Angelopoulos G N, Boufounos D. Utilization of ferroalumina as raw material in the production of ordinary portland cement[J]. Journal of Hazardous Materials, 2009, 168(1):473-478.
[4]  Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste[J]. Water Research, 2001, 35(5):1125-1134.
[5]  Wang W, Pranolo Y, Cheng C Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation and Purification Technology, 2013, 108(16):96-102.
[6]  Liu W C, Chen X Q, Li W X, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84(1):606-610.
[7]  Borer E T, Seabloom E W, Tilman D. Plant diversity controls arthropod biomass and temporal stability[J]. Ecology Letters, 2012, 15(12):1457-1464.
[8]  Zhu F, Li X F, Xue S G, et al. Natural plant colonization improves the physical condition of bauxite residue over time[J]. Environmental Science and Pollution Research, 2016, 23(22):1-9.
[9]  刘芳, 吴亮其, 王辉, 等. 商陆小G蛋白激活蛋白基因PaAGAP在逆境下表达研究[J]. 中国科学院大学学报, 2011, 28(1):116-124.
[10]  张玉秀, 金玲, 冯珊珊, 等. 镉对镉超累积植物龙葵抗氧化酶活性及基因表达的影响[J]. 中国科学院大学学报, 2013, 30(1):11-17.
[11]  蔡胜, 辜彬, 杨晓亮, 等. 浙江省废弃采石矿区植被重建后物种多样性研究[J]. 水土保持通报, 2009, 29(5):201-205.
[12]  张立敏, 陈斌, 李正跃. 应用中性理论分析局域群落中的物种多样性及稳定性[J]. 生态学报, 2010, 30(6):1556-1563.
[13]  孟广涛, 方向京, 柴勇, 等. 矿区植被恢复措施对土壤养分及物种多样性的影响[J]. 西北林学院学报, 2011, 26(3):12-16.
[14]  黄玲, 李义伟, 薛生国, 等. 氧化铝赤泥堆场盐分组成变化[J]. 中国有色金属学报, 2016,26(11):2433-2439.
[15]  Zhu F, Xue S G, Hartley W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3):2856-2863.
[16]  李小平, 冷杰斌. 中铝广西分公司赤泥堆场植被护坡试验研究[J]. 矿冶, 2007, 16(4):81-84.
[17]  朱锋, 李萌, 薛生国, 等. 自然风化过程对赤泥团聚体有机碳组分的影响[J]. 生态学报, 2017, 37(4):1174-1183.
[18]  Courtney R, Feeney E, O Grady A. An ecological assessment of rehabilitated bauxite residue[J]. Ecological Engineering, 2014, 73:373-379.
[19]  Courtney R, Kirwan L. Gypsum amendment of alkaline bauxite residue:Plant available aluminium and implications for grassland restoration[J]. Ecological Engineering, 2014, 42(5):279-282.
[20]  Wong J W C, Ho G E. Use of waste gypsum in the revegetation on red mud deposits:a greenhouse study[J]. Waste Management and Research,1993, 11(3):249-256.
[21]  Gherardi M J, Rengel Z. Genotypes of lucerne (<em>Medicago sativa</em> L.) show differential tolerance to manganese deficiency and toxicity when grown in bauxite residue sand[J]. Plant and Soil, 2003, 249(2):287-296.
[22]  Wehr J B, Fulton I, Menzies NW. Revegetation strategies for bauxite refinery residue:a case study of Alcan Gove in Northern Territory, Australia[J]. Environmental Management, 2006, 37(3):297-306.
[23]  景英仁, 景英勤, 杨奇. 赤泥的基本性质及其工程特性[J]. 山西建筑, 2001, 27(3):80-81.
[24]  李贵, 童方平, 刘振华, 等. 衡阳水口山铅锌矿区植被调查及物种多样性分析[J]. 中国农学通报, 2014, 30(13):66-70.
[25]  郭涛, 杨小波, 廖香俊, 等. 海南昌江石碌铁矿尾矿库区植被调查[J]. 生态学报, 2007, 27(2):755-762.
[26]  郭逍宇, 张金屯, 宫辉力, 等. 安太堡矿区复垦地植被恢复过程多样性变化[J]. 生态学报, 2005, 25(4):763-770.
[27]  李影, 王友保, 刘登义. 安徽铜陵狮子山铜尾矿场植被调查[J]. 应用生态学报, 2003,14(11):1981-1984.
[28]  彭少麟, 周厚诚. 广东森林群落的组成结构数量特征[J]. 植物生态学报, 1989, 20(1):10-17.
[29]  张志权, 束文圣, 廖文波, 等. 豆科植物与矿业废弃地植被恢复[J]. 生态学杂志, 2002, 21(2):47-52.
[30]  侯斌, 姜立春, 郭茑吁. 孝义铝矿土地复垦良性发展研究[J]. 矿业研究与开发, 2004, 24(3):63-65.
[31]  Hüttl R F, Weber E. Forest ecosystem development in post-mining landscapes:a case study of the Lusatian lignite district[J]. The Science of Nature, 2001, 88(8):322-329.
[32]  Tilman D. The ecological consequences of changes in biodiversity:A search for general principles[J]. Ecology, 1999, 80(5):1455-1474.
[33]  李江涛, 钟晓兰, 赵其国. 畜禽粪便施用对稻麦轮作土壤质量的影响[J]. 生态学报, 2011, 31(10):2837-2845.
[34]  左文刚, 黄顾林, 朱晓霞, 等. 施用牛粪对沿海泥质滩涂土壤原始肥力驱动及黑麦草幼苗生长的影响[J]. 植物营养与肥料学报, 2016, 22(2):372-379.
[35]  胡阳, 江莎, 李洁, 等. 光强和光质对植物生长发育的影响[J]. 内蒙古农业大学学报(自然科学版), 2009, 30(4):296-303.
[36]  杨修, 高林. 德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报, 2001, 21(11):1932-1940.
[37]  许国栋, 敖宏, 佘元冠. 可持续发展背景下世界铝工业发展现状、趋势及我国的对策[J]. 中国有色金属学报, 2012, 22(7):2040-2051.
[38]  Zhu F, Zhou J Y, Xue S G, et al. Aging of bauxite residue in association of regeneration:a comparison of methods to determine aggregate stability & erosion resistance[J]. Ecological Engineering, 2016, 92(6):47-54.
[39]  朱锋, 韩福松, 薛生国, 等. 氧化铝赤泥堆场团聚体的分形特征[J]. 中国有色金属学报, 2016, 26(6):1316-1323.
[40]  Kong X F, Li M, Xue S G, et al. Acid transformation of bauxite residue conversion of its alkaline characteristics[J]. Journal of Hazardous Material, 2017, 324:382-390.
[41]  Lockwood C L, Stewart D I, Mortimer R J G, et al. Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary:the importance of soil organic matter[J]. Environmental Science and Pollution Research, 2015, 22(14):10800-10810.
[42]  黄和平, 杨吉力, 毕军, 等. 皇甫川流域植被恢复对改善土壤肥力的作用研究[J]. 水土保持通报, 2005, 25(3):37-40.
[43]  宋会兴, 苏智先, 彭远英. 渝东山地黄壤肥力变化与植物群落演替的关系[J]. 应用生态学报, 2005, 16(2):223-226.
[44]  Jones B E H, Haynes R J. Bauxite processing residue:a critical review of its formation, properties, storage, and revegetation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(3):271-315.
[45]  戈峰, 刘向辉, 潘卫东, 等. 蚯蚓在德兴铜矿废弃地生态恢复中的作用[J]. 生态学报, 2001, 21(11):1790-1795.
[46]  束文圣, 叶志鸿, 张志权, 等. 华南铅锌尾矿生态恢复的理论与实践[J]. 生态学报, 2003, 23(8):1629-1639.
[47]  Santini T C, Fey M V. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes[J]. Environmental Science & Technology, 2013, 47(21):12089-12096.
[48]  Courtney R, Mullen G, Harrington T. An evaluation of revegetation success on bauxite residue[J]. Restoration Ecology, 2009, 17(3):350-358.
[49]  宋成军, 马克明, 傅博杰, 等. 固氮类植物在陆地生态系统中的作用研究进展[J]. 生态学报, 2009, 29(2):869-877.
[50]  张丽梅, 方萍, 朱日清. 禾本科植物联合固氮研究及其应用现状展望[J]. 应用生态学报, 2004, 15(9):1650-1654.
[51]  蔡妙珍, 刘鹏, 徐根娣, 等. 蓼科、禾本科植物细胞膜对铝胁迫反应的比较研究[J]. 水土保持学报, 2005, 19(6):124-127.
[52]  Evans K. The history, challenges, and new developments in the management and use of bauxite residue[J]. Journal of Sustainable Metallurgy, 2016, 2(4):316-331.
[53]  Zhu F, Li Y B, Xue S G, et al. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(9):9073-9081.
[54]  Harris J A, Birch P, Palmer J P. Land restoration and reclamation:principles and practice[M]. Singapore:Longman, 1996.
[55]  李斌, 童方平, 陈月华, 等. 冷水江锑矿区植物群落现状及特征[J]. 中国农学通报, 2010, 26(8):284-289.
[56]  岳建英, 郭春燕, 李晋川, 等. 安太堡露天煤矿复垦区野生植物定居分析[J]. 干旱区研究, 2016, 33(2):399-409.
[57]  储玲, 王友保, 刘登义. 安徽铜陵五公里铜尾矿废弃地的植被调查[J]. 生物学杂志, 2003, 20(1):15-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133