|
- 2015
液态金属热输运过程的分子动力学模拟
|
Abstract:
摘要 采用分子动力学模拟方法对平板间液态金属的流动换热过程进行模拟.研究液态金属的微观热输运过程,左右两侧平板采用Cu原子作为恒温固壁,液态金属Pb处于平板间,以FCC结构为初始排列.模拟结果表明,在平板间的液态金属温度分布呈线性变化;不同温度下液态金属在恒温平板间的热输运模拟过程表明,平板间液态金属的热导率随温度的升高而增加,呈现线性变化.当在系统上施加一个重力加速度时,平板间未出现明显的自然对流,表明在微尺度下,边界阻力和粘滞力抑制了液态金属的自然对流.
[1] | Chen J, Liu C, Liu F, et al. Investigation of solid wall heating by molecular dynamic simulation[J]. Journal of Engineering Thermophysics, 2007, 28(1): 9-11. |
[2] | Li Q b, Liu C. Molecular dynamics simulation of heat transfer with effects of fluid-lattice interactions[J]. International Journal of Heat and Mass Transfer,2012,55(25/26): 8 088-8 092. |
[3] | Hoyt J J, Garvin J W, Webb III E B, et al. An embedded atom method interatomic potential for the Cu-Pb system[J]. Modelling and Simulation in Materials Science and Engineering, 2003,11(3):287-299. |
[4] | Priezjev N V. Rate-dependent slip boundary conditions for simple fluids[J]. Physical Review E, 2007,75: 051 605. |
[5] | Maruyama S, Kimura T. A study on thermal resistance over a solid-liquid interface by the molecular dynamics method[J]. Thermal Science and Engineering, 1999,7(1):63-68. |
[6] | Maroo S C, Chung J N. Molecular dynamic simulation of platinum heater and associated nanoscale liquid argon film evaporation and colloidal adsorption characteristics[J]. Journal of Colloid and Interface Science, 2008,328(1): 134-146. |
[7] | Yin C Y, Mohamad E H. Simulation of liquid argon flow along a nanochannel: effect of applied force[J]. Fluid Flow and Transport Phenomena Chinese Journal of Chemical Engineering, 2009,17(5): 734-738. |
[8] | Barisik M, Beskok A. Boundary treatment effects on molecular dynamics simulations of interface thermal resistance[J]. Journal of Computational Physics, 2012, 231(23): 7 881-7 892. |
[9] | Barisik M, Beskok A. Temperature dependence of thermal resistance at the water/silicon interface[J]. International Journal of Thermal Sciences,2014,77:47-54. |
[10] | <p> Maroo S C, Chung J N. A novel fluid-wall heat transfer model for molecular dynamics simulations[J]. Journal of Nanoparticle Research, 2010,12 (5): 1 913-1 924. |
[11] | Kim B H, Beskok A, Cagin T. Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid-liquid interfaces[J]. Microfluid Nanofluidics, 2008, 5(4):551-559. |
[12] | Kamali R , Kharazmi A. Molecular dynamics simulation of surface roughness effects on nanoscale flows[J]. International Journal of Thermal Sciences, 2011,50(3): 226-232. |
[13] | Kharea R, Keblinskib P, Yethirajc A. Molecular dynamics simulations of heat and momentum transfer at a solid-fluid interface: Relationship between thermal and velocity slip[J]. International Journal of Heat and Mass Transfer,2006, 49(19/20):3 401-3 407. |
[14] | Nagayamaa G, Cheng P. Effects of interface wettability on microscale flow by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2004, 47(3): 501-513. |
[15] | Xu J, Li Y. Boundary conditions at the solid-liquid surface over the multiscale channel size from nanometer to micron[J]. International Journal of Heat and Mass Transfer,2007, 50(13/14):2 571-2 581. |
[16] | Yang S. Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel[J]. Microfluidics and Nanofluidics, 2006, 2(6):501-511. |
[17] | Ziarani A S, Mohamad A A. Effect of wall roughness on the slip of fluid in a microchannel[J]. Nanoscale and Microscale Thermophysical Engineering, 2008,12(2): 154-169. |
[18] | Belashchenko D K,Kravchunovskaya N E,Ostrovski O,Molecular dynamics calculation of surface tension of liquid metals using the embedded atom model[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34: 45-50. |
[19] | Shi Z Y, Barisik M, Beskok A. Molecular dynamics modeling of thermal resistance at argon-graphite and argon-silver interfaces[J]. International Journal of Thermal Sciences, 2012,59:29-37. |
[20] | Turan O, Poole R J, Chakraborty N. Influences of boundary conditions on laminar natural convection in rectangular enclosures with differentially heated side walls[J]. International Journal of Heat and Fluid Flow, 2012,33:131-146.</p> |