|
- 2016
HCMU度量的一个存在性定理和能量积分公式
|
Abstract:
摘要 HCMU度量是紧黎曼面上带奇点的extremal K?hler度量.本文给出一个带锥奇点的非常曲率HCMU度量(non-CSC HCMU度量)的存在性定理,并讨论一般non-CSC HCMU度量的能量积分公式.
[1] | <p> Calabi E. Extremal K?hler metrics [C]//Seminar on differential geometry. Ann of Math Stud 102, Princeton: Princeton Univ. Press, 1982: 259-290. |
[2] | Chen X X. Extremal Hermitian metrics on Riemann surfaces[J]. Calc Var, 1999, 8:191-232. |
[3] | Chen X X. Obstruction to the existence of metric whose curvature has umbilical Hessian in a K-surface[J]. Communications in Analysis and Geometry, 2000, 8(2):267-299. |
[4] | Chen Q, Chen X X, Wu Y Y. The structure of HCMU metric in a K-surface[J]. International Mathematics Research Notices, 2005,16: 941-958. |
[5] | Chen Q, Wu Y Y. Character 1-form and the existence of an HCMU metric[J]. Math Ann, 2011, 351(2):327-345. |
[6] | Chen X X. Weak limits of Riemannian metrics in surfaces with integral curvature bound[J]. Calc Var, 1998, 6: 189-226. |
[7] | Wang G F, Zhu X H. Extremal Hermitian metrics on Riemann surfaces with singularities[J]. Duke Math Journal, 2000, 104(2):181-210. |
[8] | Lin C S, Zhu X H. Explicit construction of extremal Hermitian metric with finite conical singularities on<em>S</em><sup>2</sup>[J]. Communications in Analysis and Geometry, 2002, 10(1):177-216.</p> |
[9] | Chen Q, Wu Y Y, Xu B. On one-dimensional and singular Calabi's extremal metrics whose Gauss curvatures have nonzero umbilical Hessians[J]. Israel Journal of Mathematics,2015,208(1):385-412. |