|
- 2016
不确定等式和弱测量中的不确定关系
|
Abstract:
摘要 不确定原理是量子力学的基本原理之一.我们导出2个不确定等式,适用于2个不相容的可观测量.同时得到一个弱测量中的不确定关系,适用于2个不相容可观测量对应的非厄米算符.它指出了制备前选择和后选择系综的极限.
[1] | Robertson H P. The uncertainty principle[J]. Phys Rev, 1929, 34:163-164 . |
[2] | Schr?dinger E. Sitzungsberichte der preussischen akademie der wissenschaften, physikalisch-mathematische klasse[J]. 1930, 14:296. |
[3] | Maccone L, Pati A K. Stronger uncertainty relations for all incompatible observables[J]. Phys Rev Lett, 2014, 113:260401. |
[4] | Song Q C, Qiao C F. Stronger Schr?dinger-like uncertainty relations[J]. arXiv:1504.01137. |
[5] | Aharonov Y, Albert D Z, Vaidman L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J]. Phys Rev Lett, 1988, 60:1 351-1 354. |
[6] | Long G L. Duality quantum computing and quntum information processing[J]. Int J Theor, 2011, 50:1 305-1 318. |
[7] | Anandan J S. Geometric phase for cyclic motions and the quantum state space metric[J]. Phys Lett A, 1990, 147:3-8. |
[8] | <p> Heisenberg W. über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[J]. Zeit Phys, 1927, 43:172-198. |
[9] | Kennard. E. Zur Quantenmechanik einfacher Bewegungstypen [J]. Z Phys, 1927, 44:326-352. |
[10] | Bannur V M. Comments on "stronger uncertainty relations for all incompatible observables". arXiv:1502.04853. |
[11] | Li J L, Qiao C F. Reformulating the quantum uncertainty relation[J]. Scientific Reports, 2015,5:12708. |
[12] | Huang Y. Variance-based uncertainty relations[J]. Phys Rev A, 2012, 86:024101. |
[13] | Yao Y, Xiao X, Wang X G, et al. Implications and applications of the variance-based uncertainty equalities[J]. Physics Review A, 2015,91: 062113. |
[14] | Pati A K, Wu J. Uncertainty and complementarity relations in weak measurement[J]. arXiv:1411.7218. |
[15] | Long G L. General quantum interference principle and duality computer[J]. Commun Theor Phys, 2006, 45(5):825-844. |
[16] | Pati A K, Singh U, Sinha U. Quantum theory allows measurement of non-Hermitian operators[J]. arXiv:1406.3007.</p> |