|
- 2018
鲍鱼壳的跨尺度结构及性能表征
|
Abstract:
摘要 目的:鲍鱼壳具有特殊的结构和优异的性能,通过对鲍鱼壳的跨尺度结构和性能进行深入研究,揭示鲍鱼壳从宏观到微观的结构特点和其结构与性能的关系.方法:采用数码光学显微镜和扫描电镜(SEM)对鲍鱼壳的结构进行表征,利用万能试验机测试鲍鱼壳整体的压缩强度,借助显微硬度仪表征鲍鱼壳表面和截面的硬度和断裂韧性.结果:鲍鱼壳宏观结构分为5部分,表面有生长线和螺肋;介观结构分为2层,厚度比例接近;微观结构包含角质层、棱柱层和珍珠层,珍珠层中存在棱柱层-珍珠层交替结构.整个鲍鱼壳的压缩破坏力为185 N,压缩强度约为52 MPa;鲍鱼壳不同部位的硬度显示有差异,背部的硬度最高为354 HV,其次为中顶部298 HV,头部、腹部和尾部相差不大,约为270 HV;鲍鱼壳背部的截面硬度高于表面,最高值达到了427 HV.结论:鲍鱼壳背部特殊的结构增加了其硬度,且断裂韧性高于氧化铝陶瓷(3.0 MPa·m1/2)材料.
[1] | SUMITOMO T, KAKISAWA H, KAGAWA Y.Nanoscale structure and mechanical behavior of growth lines in shell of abalone Haliotis gigantea[J]. Journal of Structural Biology, 2011, 174(1):31-36. |
[2] | SCHNEIDER A S, HEILAND B, PETER N J, et al.Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells[J]. Bmc Biophysics, 2012, 5(1):19. |
[3] | LI T, ZENG K.Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy[J]. Nanoscale, 2014, 6(4):2177-2185. |
[4] | BARTHELAT F, RABIEI R.Toughness amplification in natural composites. Journal of the Mechanics and Physics of Solids, 2011, 59(4):829-840. |
[5] | ESPINOSA H D, JUSTER A L, LATOURTE F J, et al.Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials[J]. Nature Communications, 2011, 2(1):173. |
[6] | SROT V, WEGST U G, SALZBERGER U, et al.Microstructure, chemistry, and electronic structure of natural hybrid composites in abalone shell[J]. Micron, 2013, 48(3):54-64. |
[7] | TONG H, HU J, MA W, et al.In situ analysis of the organic framework in the prismatic layer of mollusc shell[J]. Biomaterials, 2002, 23(12):2593-2598. |
[8] | 梁艳,赵杰,吴承伟. 不同生长期贝壳的结构和力学性能[J]. 复合材料学报,2011,28(3):121-126. |
[9] | LIANG Y,ZHAO J,WU C W.Microstructures and mechanical properties of mollusk shell in different growing periods[J].Acta Materiae Compositae Sinica,2011,28(3):121-126. |
[10] | LV J, JIANG Y, ZHANG D.Structural and mechanical characterization of Atrina Pectinata and freshwater mussel shells. Journal of Bionic Engineering, 2015, 12(1):276-284. |
[11] | HONG X, WANGX. Structure and roles of the various layers in the shells of conch conus litteratus[J]. Journal of Bionic Engineering, 2016, 13(1):124-131. |
[12] | HUNGER P M, DONIUS A E, WEGST U G.Platelets self-assemble into porous nacre during freeze casting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19(4):87-93. |
[13] | AUZOUXBORDENAVE S, BADOU A, GAUME B, et al.Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata[J]. Journal of Structural Biology, 2010, 171(3):277-290. |
[14] | LI T, ZENG K.Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques[J]. Acta Materialia, 2011, 59(9):3667-3679. |
[15] | GAUME B, DENISF, VANW A, et al.Characterisation and expression of the biomineralising gene Lustrin A during shell formation of the European abalone Haliotis tuberculata[J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2014, 169(3):1-8. |
[16] | 孙娜, 吴俊涛, 江雷. 贝壳珍珠层及其仿生材料的研究进展[J]. 高等学校化学学报, 2011, 32(10):2231-2239. |
[17] | SUN N, WU J T, JIANG L.Research Progress of Nacre and Biomimetic Synthesis of Nacre-like Materials[J].Chemical Journal of Chinese Universities,2011,32(10):2231-2239. |
[18] | LI X D, CHANG W C, CHAO Y J, et al.Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone[J]. NANO LETTERS, 2004, 4(4): 613-617. |
[19] | NAKAHARA H, BEVELANDER G.The formation and growth of the prismatic layer of Pinctada radiata[J]. Calcified Tissue Research, 1971, 7(1):31-45. |
[20] | FENG Q L,LIH B,CUI F Z.Crystal orientation domains found in the single lamina in nacre of the mytilus deulis shell[J].J Mater Sci Lett,1999,18(19):1573-4811. |
[21] | XU Z H, YANG Y, HUANG Z, et al.Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques[J]. Materials Science & Engineering: C, 2011, 31(8):1852-1856. |
[22] | STEMPFLE P, PANTALE O, ROUSSEAU M, et al.Mechanical properties of the elemental nanocom-ponents of nacre structure[J]. Materials Science & Engineering: C, 2010, 30(5):715-721. |
[23] | WALTHER A, BJURHAGER I, MALHO J, et al.Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties[J]. Angewandte Chemie, 2010, 49(36):6448-6453. |
[24] | HUANG S, PHUA S, LIU W, et al.Nacre-like composite films based on mussel-inspired ‘glue’ and nanoclay[J]. Rsc Advances, 2014, 4(3):1425-1431. |
[25] | YAO H, TAN Z, FANG H, et al.Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks[J]. Angewandte Chemie International Edition, 2010, 49(52):10127-10131. |
[26] | LIU J, YAN H, JIANG K.Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J]. Ceramics International, 2013, 39(6):6215-6221. |