|
- 2016
SA-混合网络模型的构造及其性质
|
Abstract:
摘要 目的设计、构造若干无标度网络并验证其无标度性,比较原网络与新网络的发展速度. 方法用迭代法在Sierpiandki网络与2维-Apollonian网络的基础上构造SA-混合网络模型,验证新网络的度分布服从幂指数在2到3之间的幂律分布. 结果SA-混合网络的度分布幂指数约为2.63,位于2和3之间,且SA-混合网络的发展速度比Sierpiandki网络与Apollonian网络的发展速度快. 结论无标度性质对无标度网络之间的混合网络具有封闭性.
[1] | WANG Xiaomin, YAO Bing, MA Fei, et al. Hierarchical structure and particular spanning trees of edge-bound growing network models[C]∥2016 12th International conference on fuzzy systems and knowledge discovery, FSKD2015,444-449. doi:<a href="http://dx.doi.org/10.1109/FSKD.2015.7381983">10.1109/FSKD.2015.7381983</a>,ISBN-13:9781467376822. |
[2] | 那日萨, 张书超, 穆 青. 一类变幂率的无标度网络构建和分析[J]. 大连理工大学学报, 2010, 50(5):811-815. |
[3] | 刘 涛, 陈 忠, 陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统科学, 2005(6): 1-7. |
[4] | NEWMAN M. The structure and function of complex networks[J]. SLAM Review, 45(2), 2003, 167-256. |
[5] | WANG Xiaomin, YAO Bing, MA Fei, et al. On composition and decomposition of networks[C]∥2015 8th the International conference on biomedical engeering and informatics and knowledge discovery, FSKD2015, page783-788. doi:<a href="http://dx.doi.org/10.1109/BMEI.2015.7401609">10.1109/BMEI.2015.7401609</a>,ISBN-13:9781509000227. |
[6] | ZHANG Zhongzhi, ZHOU Shuigeng, FANG Lujiu, et al. Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation[J]. EPL(Europhysics Letters) 2007, 79: 38007. |
[7] | ZHANG Zhongzhi, FRANCESC C, GUILLAUME F, et al. High dimensional apollonian networks[J]. Journal of Physics A: Mathematical and General, 2006,39(8):1811-1818. |
[8] | DOROGOVSTEV S N, GOLTSEV A V, MENDES J F F. Pseudofractal scale-free web[J]. Physiacal review, 2002, 65: 066122-066125. |