全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稀疏表示的轴承早期故障特征提取

DOI: 10.15918/j.tbit1001-0645.2016.04.008

Keywords: 稀疏表示 K-SVD Batch-OMP 峭度值 冲击成分 轴承故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

低速重载机械设备中的滚动轴承由于承受巨大载荷,极易出现内外环故障. 在故障早期阶段,反映故障特征的冲击成分很微弱,极易被噪声覆盖而难以识别. 为准确诊断轴承早期故障,提出基于稀疏表示的故障特征提取方法. 该方法利用K-SVD字典训练算法构造出能准确匹配冲击成分的字典,克服了参数化字典缺乏自适应性的问题;稀疏编码过程中,采用批处理正交匹配追踪算法(batch orthogonal matching pursuit,Batch-OMP)对振动信号进行分解,以逼近信号的峭度值最大原则作为分解结束条件,自适应确定出分解次数;最后,通过对重构的特征成分进行包络谱分析得出故障类型. 对仿真信号和轴承振动信号进行故障特征提取,结果表明所提方法能准确提取出冲击成分,验证了其有效性和实用性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133