|
北京理工大学学报 2016
基于人脸运动单元及表情关系模型的自动表情识别DOI: 10.15918/j.tbit1001-0645.2016.02.011 Keywords: 运动单元 Gabor特征 K临近 贝叶斯网络 极大后验概率 Abstract: 面部表情是人们表达情感和意向最有效、自然、快捷的方式. 表情的发生主体不同,程度不同,导致了表情的自发性. 基于这一难点,建立了一种人脸运动单元(action units,AUs)及面部表情间的概率关系模型,该模型将人脸分为眉眼区域和嘴巴区域两部分,采用Gabor小波提取区域特征,通过K临近(K nearest neighbor,KNN)与贝叶斯网络(Bayesian network,BN)相结合的机器学习算法进行自动AUs表情识别. 这种改进的机器学习算法,通过训练数据以及主观的先验知识进行模型学习,为AUs配以不同的权重,并且根据极大后验概率(maximum a posteriori probability,MAP)选取最优表情. 实验表明,本文所提出的模型对不同主体、不同程度的表情都表现出了较高的识别率,是一种高效且鲁棒性强的自动表情识别系统
|