|
- 2017
涡流发生器强化传热的数值模拟
|
Abstract:
通过CFD模拟, 对三角翼涡流发生器的流动和换热性能进行了研究.提出三角翼不对称布局和三角翼椭圆开孔结构, 并针对三角翼的边长进行了优化分析.结果表明:三角翼不对称分布(ABA布局)时传热效果优于对称分布(AB布局); 三角翼边长对强化传热影响复杂, 但随着边长增大, 压力系数增加; 三角翼开椭圆孔结构比开圆孔结构的强化效果更优, 且压力阻力更小, 因而椭圆孔相比圆孔能更有效地强化总传热性能.
The flow characteristics and heat transfer performance of triangular vortex generator were numerically investigated by using computational fluid dynamics(CFD) software. The asymmetrical distribution of delta wing vortex generator was introduced,together with the structure of delta wing vortex generator with elliptic holes. Meanwhile,the length of delta wing vortex generator was optimized. The results show that the asymmetrical layout of vortex generator(ABA type)performs better in heat transfer enhancement than the symmetric distribution(AB type). The effect of length on heat transfer enhancement is complex,and the pressure coefficient increases as the length becomes longer. Compared with the delta wing vortex generator with circular holes,the delta wing vortex generator with elliptic holes has better heat transfer performance and lower pressure resistance as well. Hence,the elliptic hole has more active effect on the overall heat transfer enhancement than the circular hole
[1] | 周国兵, 张于峰, 齐承英, 等, 几种翼型涡流发生器强化换热及流阻性能的实验研究[J]. 天津大学学报, 2003, 36(6):735-738. |
[2] | Depaiwa N, Chompookham T, Promvonge P. Thermal enhancement in a solar air heater channel using rectangular winglet vortex generators[C]// <i>Proceedings of</i> <i>International Conference on Energy and Sustainable Development</i>:<i>Issues and Strategies</i>(ESD). Chiang Mai, Thailand, 2010:1-7. |
[3] | Wang W Q, Chen Q Y, Wang L, et al. Experimental study of heat transfer enhancement in narrow rectangular channel with longitudinal vortex generators[J]. <i>Nuclear Engineering and Deasign</i>, 2007, 237(7):686-693. |
[4] | Bergles A E. Some perspectives on enhanced heat transfer second generation heat transfer technology[J]. <i>Journal of Heat Transfer</i>, 1988, 110(46):1082-1096. |
[5] | Zhou Guobing, Zhang Yufeng, Qi Chengying, et al. Experimental investigation of heat transfer enhancement and pressure drop of some wing-type vortex generators [J]. <i>Journal of Tianjin University</i>, 2003, 36(6):735-738(in Chinese). |
[6] | Shi B, Wang L. The optimal fin spacing for three-row flat tube bank fin mounted with vortex generators[J]. <i>Journal of Heat and Mass Transfer</i>, 2006, 43(1):91-101. |
[7] | Fiebig M, Kallweit P. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow [J]. <i>Experimental Thermal Fluid Science</i>, 1991, 4(1):103-114. |
[8] | Aris M S, McGlen R. An experimental investigation into the deployment of 3D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack[J]. <i>Applied Thermal Engineering</i>, 2011, 31(14):2230-2240. |
[9] | Eiamsa-Ard S, Wongcharee K, Eiamsa-Ard P. Heat transfer enhancement in a tube using delta-winglet twisted tape inserts[J]. <i>Applied Thermal Engineering</i>, 2010, 30(4):310-318. |
[10] | viewpoint of field synergy principle[J]. <i>Applied Thermal Engineering</i>, 2007, 27(14):2609-2617. |
[11] | Zhou G, Feng Z. Experimental investigation of heat transfer enhancement by plane curved winglet type vortex generators with punched holes[J]. <i>International Journal of Thermal Science</i>, 2014, 78(1):26-35. |
[12] | Vasudevan R, Eswaran V, Biswas G. Winglet-type vortex generator for plate fin heat exchangers using triangular fins[J]. <i>Numerical Heat Transfer</i>, 2000, 38(5):533-555. |
[13] | Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator(Part B):Parametric study of major influence factors[J]. <i>International Journal of Heat and Mass Transfer</i>, 2008, 51(13):3683-3692. |
[14] | Caliskan S. Experimental investigation of heat transfer in a channel with new winglet-type vortex generators[J]. <i>International Journal of Heat and Mass Transfer</i>, 2014, 78(11):604-614. |
[15] | Webb R L, Bergles A E. Heat transfer enhancement:Second generation technology[J]. <i>Mechanical Engineering, </i>1983, 105(6):60-67. |
[16] | Tian L T, He Y L, Lei Y G, et al. Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis [J]. <i>International Communications in Heat and Mass Transfer</i>, 2009, 36(2):111-120. |
[17] | He Y L, Tao W Q, Song F Q, et al. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle[J]. <i>Int J Heat Fluid Flow</i>, 2005, 26(3):459-473. |
[18] | rangement with longitudinal vortex generator from the |
[19] | Lei Y G, He Y L, Tian L T. et al. Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators[J]. <i>Chemical Engineering Science</i>, 2010, 65(5):1551-1562. |
[20] | Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator(Part A):Verification of field synergy principle[J]. <i>International Journal of Heat and Mass Transfer</i>, 2008, 51(5):1179-1191. |
[21] | Kim E, Yang J S. An experimental study of heat transfer characteristics of a pair of longitudinal vortices using color capturing technique[J]. <i>International Journal of Heat and Mass Transfer</i>, 2002, 45(16):3349-3356. |
[22] | Saha P, Biswas G, Sarkar S. Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger―A synergy based analysis[J]. <i>International Journal of Heat and Mass Transfer</i>, 2014, 74(4):292-305. |
[23] | Wu J M, Tao W Q. Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned ar- |
[24] | Min C, Qi C. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators [J]. <i>International Journal of Heat and Mass Transfer</i>, 2010, 53(915):3023-3029. |
[25] | Min C, Qi C. Numerical investigation of turbulent flow and heat transfer in a channel with novel longitudinal vortex generators[J]. <i>International Journal of Heat and Mass Transfer</i>, 2012, 55(23):7268-7277. |