全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

粉煤灰预处理浆液槽流场分析与搅拌参数优化
Flow Field Analysis and Stirring Parameters Optimization of Fly Ash Pretreatment Slurry Tank

DOI: 10.11784/tdxbz201509009

Keywords: 粉煤灰浆液槽,两相流,数值模拟,搅拌参数优化,搅拌功率
fly ash slurry tank
,two-phase flow,numerical simulation,stirring parameters optimization,stirring power

Full-Text   Cite this paper   Add to My Lib

Abstract:

粉煤灰预处理浆液槽在混合的同时实现预反应, 并对颗粒细化, 为后续预脱硅反应奠定基础.其浆液调配的准确度与料浆混合的均匀度将直接影响粉煤灰预脱硅效率, 继而影响高铝粉煤灰制备氧化铝的产品质量及能耗.结合某单位生产现场的物料细化实验数据, 采用实验室搅拌实验验证的数值模拟方法对该单位浆液槽内的流场进行分析, 在此基础上对其操作参数进行优化.研究发现优化转速与物料粒径呈正相关关系, 搅拌功率随颗粒粒径、初始固相体积分数及搅拌转速的增加而增大, 其中搅拌转速对功率的影响最大, 优化后搅拌能耗可降低30% 左右.
The fly ash pretreatment slurry tank provides a foundation for the pre-desilication process in the preparation of aluminum oxide from high-alumina fly ash as it can offer place for the pre-reaction of materials,blend the fluid and particle well and pulverize the particles at the same time. So the accuracy of the blending process and the uniformity of mixture in it will directly influence the pre-desilication efficiency and then the quality of products and total energy consumption. Based on the refining particle experimental data from the industry and the stirring experimental data in laboratory, a numerical computation method was adopted to simulate the flow field in the slurry tank and then optimize the operating parameters on the basis of the calculation results. The study indicates that the optimized stirring speed is positively correlated with the particle size of material,and the stirring power increases with the increase of particle size,initial solid volume fraction and stirring speed,among which the stirring speed has the most significant impact on the stirring power. Calculation shows that the energy consumption can be reduced by nearly 30% after employing the optimized operating parameters

References

[1]  Zhang Minge, Zhang Lühong, Jiang Bin, et al. Performance of flow field in different fluids stirred with double helical ribbon and screw impeller[J]. <i>Journal of Tianjin University</i>, 2009, 42(10):884-890(in Chinese).
[2]  Li Yan, Liu Xuedong, Qian Jianfeng. Numerical simulation and experimental investigation on mixing characteristics of new type of glass-lined agitators[J]. <i>Chemical Industry and Engineering Progress</i>, 2013, 32(9):2056-2060(in Chinese).
[3]  Zhang Qinghua, Mao Zaisha, Yang Chao, et al. Numerical simulation of barium sulfate precipitation process in a continuous stirred tank with multiple-time-scale turbulent mixer model[J]. <i>Industrial & Engineering Chemistry Research</i>, 2008, 48(1):424-429.
[4]  Oshinowo L M, Bakker A. CFD modeling of solids suspensions in stirred tanks[C]// <i>Conference on Computational Modeling of Materials</i>, <i>Minerals and Metals Processing</i>. San Diego, CA, 2001:205-215.
[5]  王凯, 冯连芳. 混合设备设计[M]. 北京:机械工业出版社, 2000.
[6]  Zhang Zhongguo, Liu Dan, Hu Dandan, et al. Effects of slow-mixing on the coagulation performance of polyaluminum chloride(PACI)[J]. <i>Chinese Journal of Chemical Engineering</i>, 2013, 21(3):318-323.
[7]  王振松. 高浓度固-液搅拌槽内流场研究[D]. 北京:北京化工大学化学工程学院, 2005.
[8]  刘丽艳, 李晨辰, 朱国瑞, 等. 粉煤灰预处理浆液槽停车与启动瞬态过程研究[J]. 天津大学学报:自然科学与工程技术版, 2015, 48(5):388-394.
[9]  张占军. 从高铝粉煤灰中提取氧化铝等有用资源的研究[D]. 西安:西北大学地质学系, 2007.
[10]  李岩, 刘雪东, 钱建峰. 新型搪玻璃搅拌桨搅拌特性数值模拟及实验研究[J]. 化工进展, 2013, 32 (9):2056-2060.
[11]  Brucato A, Grisafi F, Montante G. Particle drag coefficients in turbulent fluids[J]. <i>Chemical Engineering Science</i>, 1998, 53(18):3295-3314.
[12]  Fan L, Mao Z, Wang Y. Numerical simulation of turbulent solid-liquid two-phase flow and orientation of slender particles in a stirred tank[J]. <i>Chemical Engineering Science</i>, 2005, 60(24):7045-7056.
[13]  马青山, 王英琛, 施力田. 多层搅拌桨流动场的测量与数值模拟[J]. 化工学报, 2003, 54(12):1661-1666.
[14]  Ma Qingshan, Nie Yiqiang, Bao Yuyun, et al. Numerical simulation of hydrodynamics in stirred tank[J]. <i>Journal of Chemical Industry and Engineering</i> (<i>China</i>), 2003, 54(5):612-617(in Chinese).
[15]  Wang Feng, Wang Weijing, Mao Zaisha. Numerical study of solid-liquid two-phase flow in stirred tanks with rushton impeller[J]. <i>Chinese Journal of Chemical Engineering</i>, 2004, 12(5):599-609.
[16]  张国娟, 闵健, 高正明, 等. 翼形桨搅拌槽内混合过程的数值模拟[J]. 高校化学工程学报, 2005, 19(2):169-174.
[17]  Zhang Guojuan, Min Jian, Gao Zhengming, et al. Numerical simulation of mixing process in a stirred tank with hydrofoil impeller[J]. <i>Journal of Chemical Engineering of Chinese Universities</i>, 2005, 19(2):169-174(in Chinese).
[18]  永田进治. 混合原理及应用[M]. 马继舜, 译. 北京:化学工业出版社, 1984.
[19]  Nagata Shinji. <i>Principle and Application of Mixing</i>[M]. Ma Jishun, Trans. Beijing:Chemical Industry Press, 1984(in Chinese).
[20]  Micale G, Montante G, Grisafi F, et al. CFD simulation of particle distribution in stirred vessels[J]. <i>Chemical Engineering Research and Design</i>, 2000, 78(3):435-444.
[21]  Liu Liyan, Li Chenchen, Zhu Guorui, et al. Transient numerical simulation of the stop and restart condition in fly ash-sodium hydroxide slurry tank[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2015, 48(5):388-394(in Chinese).
[22]  刘丽艳, 李晨辰, 朱国瑞, 等. 粉煤灰-氢氧化钠浆液槽放大准则数值模拟研究[J]. 现代化工, 2014, 34(2):148-151.
[23]  Liu Liyan, Li Chenchen, Zhu Guorui, et al. Computation study of scale-up laws for fly ash-sodium hydroxide slurry tank[J]. <i>Modern Chemical Industry</i>, 2014, 34(2):148-151(in Chinese).</i></i>
[24]  Wang Kai, Feng Lianfang. <i>Mixing Equipment Design<i> [M]. Beijing:China Machine Press, 2000(in Chinese).
[25]  陈道芳, 徐雷兴, 陈甘棠, 等. 固、液系机械搅拌槽中颗粒悬浮特性的研究[J]. 化学反应工程与工艺, 1992, 8(1):44-53.
[26]  马青山, 聂毅强, 包雨云, 等, 搅拌槽内三维流场的数值模拟[J]. 化工学报, 2003, 54(5):612-617.
[27]  Zhang Zheng, Xie Zhuoli. Numerical simulation of fluid-solid two-phase flows[J]. <i>Journal of Chemical Industry and Engineering</i>(<i>China</i>), 2001, 52(1):1-12(in Chinese).
[28]  Zwietering T N. Suspending of solid particles in liquid by agitators[J]. <i>Chemical Engineering Science</i>, 1958, 8(3):244-253.
[29]  Wang Zhensong. The Study of Local Velocities in a Solid-Liquid Stirred Tank with a High Concentration of Solid[D]. Beijing:College of Chemical Engineering, Beijing University of Chemical Technology, 2005(in Chinese).
[30]  Zhang Zhanjun. Research on Extraction of Alumina and Other Useful Resources from High Aluminium Fly Aash [D]. Xi′an:Department of Geology, Northwest University, 2007(in Chinese).
[31]  杨锋苓, 周慎杰. 搅拌槽内单相湍流流场数值模拟研究进展[J]. 化工进展, 2011, 30(6):1158-1169. Yang Fengling, Zhou Shenjie. Progress of numerical simulation of single-phase turbulent flow field in stirred tanks[J]. <i>Chemical Industry and Engineering Progress</i>, 2011, 30(6):1158-1169(in Chinese).
[32]  张敏革, 张吕鸿, 姜斌, 等. 双螺带-螺杆搅拌桨在不同流体中的搅拌流场特性[J]. 天津大学学报, 2009, 42(10):884-890.
[33]  Chen Daofang, Xu Leixing, Chen Gantang, et al. Research on the suspension characteristics of particles in solid-liquid stirred tank[J]. <i>Chemical Reaction Engineering and Technology</i>, 1992, 8(1):44-53(in Chinese).
[34]  Klenov O P, Noskov A S. Solid dispersion in the slurry reactor with multiple impellers[J]. <i>Chemical Engineering Journal</i>, 2011, 176(8):75-82.
[35]  Ma Qingshan, Wang Yingchen, Shi Litian. Measurement and numerical simulation of flow field in stirred tank with multiple impellers[J]. <i>Journal of Chemical Industry and Engineering</i>(<i>China</i>), 2003, 54(12):1661-1666(in Chinese).
[36]  张政, 谢灼利. 流体-固体两相流的数值模拟[J]. 化工学报, 2001, 52(1):1-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133