全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

矩形通道中涡流发生器换热性能的实验研究与模拟
Experiment and Simulation of Heat Transfer in a Rectangular Channel with Vortex Generator

DOI: 10.11784/tdxbz201507080

Keywords: 对流传热强化,涡流发生器,涡量值,流动特性,计算流体力学
convective heat transfer enhancement
,vortex generator,vorticity,flow characteristic,computational fluid dynamics(CFD)

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过换热实验和CFD模拟, 在Re=150~1 200范围内对布置有斜截式半椭圆柱型涡流发生器的矩形换热通道内的流动和换热特性进行研究, 并对其强化换热机理进行了分析.结果表明, 布置有涡流发生器的换热通道较光滑通道Nu增加, 压降增大, 并且强化效果随Re增大而增强.在涡流发生器布置处产生了纵向涡, 使截面涡量值大幅增加, 从而强化了换热过程.
The flow characteristics and heat transfer of the oblique-cut semi-elliptic cylinder shell in a rectangular channel with a Re range of 150―1 200 were investigated numerically and experimentally. The heat transfer augmentation mechanism was then analyzed based on the simulation results. The results show that,compared with smooth channel,Nu and pressure drop increase simultaneously in the channel with vortex generator,which has an increasingly positive effect on the heat transfer performance with the increase of Re. Moreover,it is found that the longitudinal vortex was generated around the vortex generator to increase the local vorticity,thus enhancing the heat transfer

References

[1]  Tao Wenquan, He Yaling. <i>Convective Heat Transfer</i>:<i>Its Recent Advances in Enhancement Theory and Experimental Studies</i>[M]. Beijing:Higher Education Press, 2005(in Chinese).
[2]  汪健生, 张金凤, 刘志毅. 小尺度涡流发生器强化传热的数值模拟[J]. 化工学报, 2007, 58(7):1648-1654.
[3]  Wang Jiansheng, Zhang Jinfeng, Liu Zhiyi. Numerical simulation of heat transfer enhancement mechanism of small-scale vortex generator[J]. <i>Journal of Chemical Industry and Engineering</i>(<i>China</i>), 2007, 58(7):1648-1654(in Chinese).
[4]  Bergles A E. Techniques to enhance heat transfer[G]// <i>Handbook of Heat</i>. New York, USA:McGraw-Hill, 1998.
[5]  Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator(Part A):Verification of field synergy principle[J]. <i>International Journal of Heat & Mass Transfer</i>, 2008, 51(5/6):1179-1191.
[6]  Wu J M, Tao W Q. Effect of longitudinal vortex generator on heat transfer in rectangular channels[J]. <i>Applied Thermal Engineering</i>, 2012, 37(5):67-72.
[7]  Li X W, Meng J A, Guo Z Y. Turbulent flow and heat transfer in discrete double inclined ribs tube[J]. <i>International Journal of Heat & Mass Transfer</i>, 2009, 52(3/4):962-970.
[8]  Tian L T, He Y L, Tao Y B, et al. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements[J]. <i>International Journal of Thermal Sciences</i>, 2009, 48(9):1765-1776.
[9]  Fiebig M, Valencia A, Mitra N K. Wing-type vortex generators for fin-tube heat exchangers [J]. <i>Experimental Thermal and Fluid Science</i>, 1993, 7(4):287-295.
[10]  Johnson T R, Joubert P N. The influence of vortex generators on drag and heat transfer from a circular cylinder normal to an air stream[J]. <i>Journal of Heat Transfer</i>, 1969, 91(1):91-99.
[11]  Chen Y, Fiebig M, Mitra N K. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators[J]. <i>International Journal of
[12]  Biswas G, Mitra N K, Fiebig M. Heat transfer enhancement in fin-tube heat exchangers by winglet type vortex generators[J]. <i>International Journal of Heat and Mass Transfer</i>, 1994, 37(2):283-291.
[13]  Jacobi A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices:A review of recent progress[J]. <i>Experimental Thermal and Fluid Science</i>, 1995, 11(3):295-309.
[14]  Gentry M C, Jacobi A M. Heat transfer enhancement by delta-wing vortex generators on a flat plate:Vortex interactions with the boundary layer[J]. <i>Experimental Thermal and Fluid Science</i>, 1997, 14(3):231-242.
[15]  Fiebig M. Vortices, generators and heat transfer[J]. <i>Transactions of Institution of Chemical Engineers</i>, 1998, 76(2):108-123.
[16]  He Y L, Tao W Q, Song F Q, et al. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle[J]. <i>Int J Heat Fluid Flow</i>, 2005, 26(3):459-473.
[17]  Wu J M, Tao W Q, Wu J M, et al. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator(Part B):Parametric study of major influence factors[J]. <i>International Journal of Heat & Mass Transfer</i>, 2008, 51(13/14):3683-3692.
[18]  Ehsan M L, Mofid G B, Reza M. A numerical study of flow and temperature fields in circular tube heat ex-changer with elliptic vortex generators[J]. <i>Thermal Science</i>, 2008, 12(2):129-136.
[19]  Tao W Q, He Y L, Wang Q W, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. <i>Int J Heat Mass Transfer</i>, 2002, 45(24):4871-4879.
[20]  </i><i>Heat and Mass Transfer</i>, 2000, 43(3):417-435.
[21]  陶文铨, 何雅玲. 对流换热及其强化的理论与实验研究最新进展[M]. 北京:高等教育出版社, 2005.
[22]  Fiebig M. Vortex generator for compact heat exchanger [J]. <i>Journal of Enhanced Heat Transfer</i>, 1995, 2(1/2):43-61.
[23]  Lei Y G, He Y L, Tian L T, et al. Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators[J]. <i>Chemical Engineering Science</i>, 2010, 65(5):1551-1562.
[24]  Fiebig M. Embedded vortices in internal flow:Heat transfer and pressure loss enhancement[J]. <i>International Journal of Heat and Fluid Flow</i>, 1995, 16(5):376-388.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133