全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

锥顶型封闭空间内爆轰波汇聚实验研究
Experiment on Convergence of Shock Wave in Cone-Roof Close Space

DOI: 10.11784/tdxbz201709024

Keywords: 烈性爆震,能量汇聚,爆轰波,活塞破坏,定容弹
severe knock
,energy convergence,shock wave,piston failure,constant volume bomb

Full-Text   Cite this paper   Add to My Lib

Abstract:

内燃机中烈性爆震的发生会伴随着爆轰波的形成, 爆轰波形成后将在燃烧室密闭空间内反射汇聚, 并对燃烧室组件造成严重破坏.然而, 对于活塞破坏失效问题的研究一直无法深入.为了揭示密闭有限空间内爆轰波汇聚现象及其破坏机理, 设计了一套可以重复再现烈性爆震的爆轰容弹实验装置来进行探索研究.在余隙可变的锥顶型燃烧室内, 通过高能点火器强行引入一道爆轰波.研究表明, 爆轰波的行为会导致燃烧室内部压力分布极为不均, 并在活塞边缘和中心两处产生强烈汇聚.最后, 展示了受汇聚破坏的样本, 并进行了强度及能量计算, 进一步说明组件的破坏是由爆轰波汇聚导致的.
Shock wave formed in internal combustion engines under severe knock will reflect and converge in close space,causing severe damage to combustion chamber parts. However,the research on the failure of piston has not yet gone deeper. In order to reveal such a convergence mechanism and its destruction effects in cone-roof close space,a constant volume detonation bomb,in which severe knock could recur,was designed to conduct this research. In bomb experiments,a detonation wave was forcibly introduced into a clearance-variable cone-roof combustion chamber by a high energy spark ignition. It is found that the behavior of shock waves can cause pressure maldistribution in the combustion chamber,in which the shock wave focusing always occurs in the central and edge regions. Finally,the research presents some samples of damaged combustion chamber parts. The strength and energy calculations are also carried out to further prove that the destruction of engine parts is caused by shock wave focusing

References

[1]  Dahnz C, Spicher U. Irregular combustion in super-charged spark ignition engines-pre-ignition and other phenomena[J]. <i>International Journal of Engine Research</i>, 2010, 11(6):485-498.
[2]  Dahnz C, Han K, Spiher U, et al. Investigations on pre-ignition in highly supercharged SI engines[J]. <i>SAE International Journal of Engines</i>, 2010, 3(1):214-224.
[3]  Amann M, Mehta D, Alger T. Engine operating condition and gasoline fuel composition effects on low-speed pre-ignition in high-performance spark ignited gasoline engines[J]. <i>SAE International Journal of Engines</i>, 2011, 4(1):274-285.
[4]  Zhen X, Wang Y, Zhu Y. Study of knock in a high compression ratio SI methanol engine using LES with detailed chemical kinetics[J]. <i>Energy Conversion and Management</i>, 2013, 75:523-531.
[5]  Zhen X, Wang Y, Xu S, et al. Study of knock in a high compression ratio spark-ignition methanol engine by multi-dimensional simulation[J]. <i>Energy</i>, 2013, 50(1):150-159.
[6]  Yao A, Xu H, Yao C. Analysis of pressure waves in the cone-type combustion chamber under SI engine knock[J]. <i>Energy Conversion and Management</i>, 2015, 96:146-158.
[7]  续晗, 姚安仁, 姚春德, 等. 基于柴油机ω 型燃烧室缸内激波的活塞破坏研究[J]. 工程热物理学报, 2014, 35(3):586-592.
[8]  Xu Han, Yao Anren, Yao Chunde, et al. Piston damaged by detonation wave produced in ω type combustion chamber[J]. <i>Journal of Engineering Thermophysics</i>, 2014, 35(3):586-592(in Chinese).
[9]  姚春德, 姚安仁, 续晗. 内燃机爆震及其对燃烧室组件破坏的机理[M]. 北京:科学出版社, 2015.
[10]  Kalghatgi G T, Bradley D. Pre-ignition and super-knock in turbo-charged spark-ignition engines[J]. <i>International Journal of Engine Research</i>, 2012, 13(4):399-414.
[11]  Bradley D, Lawes M, Liu K. Turbulent flame speeds in ducts and the deflagration/detonation transition[J]. <i>Combustion and Flame</i>, 2008, 154(1/2):96-108.
[12]  Bates L, Bradley D, Paczko G, et al. Engine hot spots:Modes of auto-ignition and reaction propagation [J]. <i>Combustion and Flame</i>, 2016, 166:80-85.
[13]  Wang Z, Qi Y, Liu H, et al. Experimental study on pre-ignition and super-knock in gasoline engine combustion with carbon particle at elevated temperatures and pressures[C]// <i>SAE Technical Paper</i>, 2015:2015-01-0752.
[14]  Wang Z, Qi Y, He X, et al. Analysis of pre-ignition to super-knock:Hotspot-induced deflagration to detonation [J]. <i>Fuel</i>, 2015, 144:222-227.
[15]  Zahdeh A, Rothernberger P, Nguyen W, et al. Fundamental approach to investigate pre-ignition in boosted SI engines[J]. <i>SAE International Journal of Fuels and Lubricants</i>, 2011, 4(1):246-273.
[16]  Xu H, Yao A, Yao C. The influence of different auto-ignition modes on the behavior of pressure waves[J]. <i>Energy Conversion and Management</i>, 2015, 106:73-83.
[17]  姚春德, 续晗, 姚安仁, 等. 缸内激波对锥顶型燃烧室的活塞破坏机理研究[J]. 爆炸与冲击, 2015, 35(1):57-64.
[18]  Yao Chunde, Xu Han, Yao Anren, et al. Damage mechanism of detonation wave to piston in combustion chamber with cone-type roof[J]. <i>Explosion and Shock Waves</i>, 2015, 35(1):57-64(in Chinese).
[19]  Yao Chunde, Yao Anren, Xu Han. <i>Mechanism of Components Damaged by Internal Combustion Engine Knocking</i>[M]. Beijing:Science Press, 2015(in Chinese).
[20]  Bradley D, Kalhatgi G T. Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines[J]. <i>Combustion and Flame</i>, 2009, 156(12):2307-2318.
[21]  Bradley D. Autoignitions and detonations in en gines and ducts[J]. <i>Philosophical Transactions of the Royal Society A</i>:<i>Mathematical</i>, <i>Physical and Engineering Sciences</i>, 2012, 370(1960):689-714.
[22]  Wang Z, Liu H, Song T, et al. Investigation on pre-ignition and super-knock in highly boosted gasoline direct injection engines[C]//<i>SAE Technical Papers</i>. Shanghai, China, 2014:2014-01-1212.
[23]  Yu H, Chen Z. End-gas autoignition and detonation development in a closed chamber[J]. <i>Combustion and Flame</i>, 2015, 162:1-10.
[24]  张博, 白春华. 气相爆轰动力学[M]. 北京:科学出版社, 2012.
[25]  Zhang B, Bai C. Critical energy of direct detonation initiation in gaseous fuel-oxygen mixtures[J]. <i>Safety Science</i>, 2013, 53:153-159.
[26]  姚安仁, 罗震, 姚春德, 等. 甲醇点燃式发动机爆震破坏形式试验研究[J]. 机械工程学报, 2013, 49(4):122-127.
[27]  Yao Anren, Luo Zhen, Yao Chunde, et al. Experimental study of the failure modes of the methanol-ignition engine knock[J]. <i>Journal of Mechanical Engineering</i>, 2013, 49(4):122-127(in Chinese).
[28]  Qi Y, Wang Z, Wang J, et al. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock[J]. <i>Combustion and Flame</i>, 2015, 162:4119-4128.
[29]  Qi Y, He X, Wang Z, et al. An experimental investigation of super knock combustion mode using a one-dimensional constant volume bomb[J]. <i>International Journal of Hydrogen Energy</i>, 2015, 40(5):2377-2385.
[30]  Wang Z, Liu H, Song T, et al. Relationship between super-knock and pre-ignition[J]. <i>International Journal of Engine Research</i>, 2015, 16(2):166-180.
[31]  Robert A, Richard S, Colin O, et al. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine[J]. <i>Combustion and Flame</i>, 2015, 162:2788-2807.
[32]  Zhang Bo, Bai Chunhua. <i>Gas Phase Detonation Dynamics</i>[M]. Beijing:Science Press, 2012(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133