全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

姜黄素修饰透明质酸的自组装特性及其对Aβ40聚集的抑制作用:透明质酸相对分子质量的影响
Self-Assembly Features of Curcumin Modified Hyaluronic Acid and Its Inhibitory Effect on Aβ40 Aggregation: Effect of Relative Molecular Mass of Hyaluronic Acid

DOI: 10.11784/tdxbz201708015

Keywords: 淀粉样β蛋白,纳米抑制剂,自组装纳米粒子,姜黄素-透明质酸结合物
amyloid β-peptide
,nano-inhibitor,self-assembled nanoparticles,curcumin-hyaluronic acid conjugates

Full-Text   Cite this paper   Add to My Lib

Abstract:

淀粉样β蛋白(amyloid β-peptide, Aβ)的聚集是阿尔兹海默症的主要病因.姜黄素(curcumin, Cur)是一种良好的Aβ聚集小分子抑制剂, 但其存在水溶性和稳定性差等缺点.针对该问题, 笔者先前将Cur修饰在透明质酸(hyaluronic acid, HA)上形成自组装纳米粒子CHA, 不仅改善了Cur的水溶性和稳定性, 而且还提高了Cur对Aβ聚集的抑制效果.为进一步考察HA的相对分子质量对纳米粒子自组装特性及其对Aβ聚集的抑制作用的影响, 本研究将Cur分别以不同修饰度(substitution degree, SD)修饰在相对分子质量40、300和1 000的HA上, 得到3类CHA.实验结果表明:HA相对分子质量能影响CHA的纳米结构及其最佳SD, HA相对分子质量越大, 形成的CHA纳米结构越疏松, 因而其最佳SD越大; 在最佳SD下, 相对分子质量为300的HA自组装形成的CHA的纳米结构最为合适, 其抑制效果最好.研究结果对自组装纳米药物的设计具有重要的参考意义.
The aggregation of amyloid β-peptide(Aβ)is the main cause of Alzheimer’s disease. Curcumin(Cur)is an excellent Aβ aggregation inhibitor but with low solubility and stability. Previously we conjugated Cur to hyaluronic acid(HA)to form self-assembled nanoparticles(CHA),which not only improved the water solubility and stability of Cur,but also improved its inhibitory effect on Aβ aggregation. In order to further investigate the effect of the relative molecular mass of HA on the self-assembly properties of nanoparticles and the inhibition of Aβ aggregation,Cur was conjugated to three kinds of HA with different relative molecular masses(40,300 and 1 000)at different substitution degrees(SD)to obtain three different classes of CHA. The experimental results revealed that the relative molecular mass of HA could influence the nanostructure of CHA and its optimal SD. Specifically,the larger the relative molecular mass of HA was,the looser the CHA nanostructure was,so the bigger the optimal SD was. Moreover,the CHA assembled by HA with relative molecular mass 300 at the optimal SD had the most appropriate nanostructure,which presented the best inhibitory effect. This study offers important reference value for the design and development of self-assembled nanoparticles

References

[1]  Jakobroetne R, Jacobsen H. Alzheimer’s disease:From pathology to therapeutic approaches[J]. <i>Ange-wandte Chemie International Edition</i>, 2009, 40(25):3030-3059.
[2]  Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer’s disease:Progress and problems on the road to therapeutics[J]. <i>Science</i>, 2002, 297(5580):353-356.
[3]  Jensen M, Canning A, Chiha S, et al. Inhibition of Cu-Amyloid-β by using bifunctional peptides with β-sheet breaker and chelator moieties[J]. <i>Chemistry</i>, 2012, 18(16):4836-4839.
[4]  Stanyon H F, Viles J H. Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium:Implications for Alzheimer disease[J]. <i>Journal of Biological Chemistry</i>, 2012, 287(33):28163-28168.
[5]  Liu H, Yu L L, Dong X Y, et al. Synergistic effects of negatively charged hydrophobic nanoparticles and(-)-epigallocatechin-3-gallate on inhibiting amyloid β-protein aggregation[J]. <i>Journal of Colloid and Interface Science</i>, 2017, 491:305-312.
[6]  Xi W H, Wei G H. Amyloid-β peptide aggregation and the influence of carbon nanoparticles[J]. <i>Chinese Physics B</i>, 2016, 25(1):324-332.
[7]  Potter P E. Curcumin:A natural substance with poten-tial efficacy in Alzheimer’s disease[J]. <i>Journal of Experimental Pharmacology</i>, 2013, 5:23-31.
[8]  Williams P, Sorribas A, Howes M J R. Natural products as a source of Alzheimer’s drug leads[J]. <i>Natural Product Reports</i>, 2011, 42(18):48-77.
[9]  Choi K Y, Min K H, Na J H, et al. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy:Synthesis, characterization, and in vivo biodistribution[J]. <i>Journal of Medicinal Chemistry</i>, 2009, 19(24):4102-4107.
[10]  Zhao H F, Li N, Wang Q, et al. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats [J]. <i>Neuroscience</i>, 2015, 310(5):641-649.
[11]  Ono K, Yoshiike Y, Takashima A, et al. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphe-nols in vitro:Implications for the prevention and therapeutics of Alzheimer’s disease[J]. <i>Journal of Neurochemistry</i>, 2003, 87(1):172-181.
[12]  Perrin R J, Fagan A M, Holtzman D M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease[J]. <i>Nature</i>, 2009, 461(7266):916-922.
[13]  Richman M, Wilk S, Chemerovski M, et al, In vitro and mechanistic studies of an antiamyloidogenic self-assembled cyclic D, L-α-peptide architecture[J]. <i>Journal of the American Chemical Society</i>, 2013, 135(9):3474-3484.
[14]  Li H, Rahimi F, Bitan G. Modulation of amyloid β-protein(Aβ)assembly by homologous C-terminal fragments as a strategy for inhibiting Aβ toxicity[J]. <i>ACS Chemical Neuroscience</i>, 2016, 7(7):845-856.
[15]  张宝红, 胡国胜, 朱登森, 等. 过氧钒配合物抑制朊蛋白淀粉样肽的纤维形成[J]. 物理化学学报, 2016, 32(7):1810-1818.
[16]  Zhang Baohong, Hu Guosheng, Zhu Dengsen, et al. Inhibition of prion amyloid peptide fibril formation by peroxovanadium complexes [J]. <i>Acta Physico-Chimica Sinica</i>, 2016, 32(7):1810-1818(in Chinese).
[17]  Choi K Y, Min K H, Hong Y Y, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo[J]. <i>Biomaterials</i>, 2011, 32(7):1880-1889.
[18]  Li J L, Shin G H, Chen X G, et al. Modified curcumin with hyaluronic acid:Combination of pro-drug and nano-micelle strategy to address the curcumin challenge [J]. <i>Food Research International</i>, 2015, 69:202-208.
[19]  Sun M, Gao Y, Guo C, et al. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate)nanoparticle[J]. <i>Journal of Nanoparticle Research</i>, 2010, 12(8):3111-3122.
[20]  Mattson M P. Pathways towards and away from Alzheimer’s disease[J]. <i>Nature</i>, 2004, 430(7000):631-639.
[21]  Xie B L, Li X, Dong X Y, et al. Insight into the inhibition effect of acidulated serum albumin on amyloid β-protein fibrillogenesis and cytotoxicity[J]. <i>Langmuir</i>, 2014, 30(32):9789-9796.
[22]  Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin:Problems and promises [J]. <i>Molecular Pharmaceutics</i>, 2007, 4(6):807-818.
[23]  Nelson K M, Dahlin J L, Bisson J, et al. The essential medicinal chemistry of curcumin[J]. <i>Journal of Medicinal Chemistry</i>, 2017, 60(5):1620-1637.
[24]  Jiang Z Q, Dong X Y, Liu H, et al. Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity[J]. <i>Reactive and Functional Polymers</i>, 2016, 104:22-29.
[25]  Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability[J]. <i>Journal of Colloid and Interface Science</i>, 2011, 359(1):318-325.
[26]  Liang D, Wang A T, Yang Z Z, et al. Enhance cancer cell recognition and overcome drug resistance using hyaluronic acid and α-tocopheryl succinate based multi-functional nanoparticles[J]. <i>Molecular Pharmaceutics</i>, 2015, 12(6):2189-2202.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133