全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于图模型及骨架信息的人体分割算法
Body Segmentation Algorithm Based on Graph Model and Skeleton Information

DOI: 10.11784/tdxbz201709007

Keywords: 人体分割,RGB-D,骨架,图模型
body segmentation
,RGB-D,skeleton,graph model

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对复杂场景中分割人体不准确的问题, 提出了一种在图论优化框架中联合RGB-D信息和骨架信息的人体分割算法.首先, 采用边缘引导的滤波算法修复低质量的深度图, 得到高质量的深度图; 然后通过一种聚类算法对RGB-D数据进行聚类得到超像素; 最后在图模型中将超像素看作节点, 并结合相应的人体骨架来提高区分人体和背景相似颜色区域的能力, 设计能量函数各组成项, 最小化能量函数得到全局最佳的融合结果.为验证算法的有效性, 在实际场景数据集上与多种算法进行比较.实验结果表明, 在主观视觉和客观指标上, 本文提出的算法均得到了更为准确的人体分割结果.
To resolve efficient human body segmentation from complicated background,a body segmentation algorithm based on the graph-based optimization framework with the combination of RGB-D and skeleton information was proposed in this paper. Firstly,an edge-guided filter algorithm was adopted to recover low quality depth map and obtain high quality depth map. Then the RGB-D data was clustered into superpixels via a clustering algorithm. Finally,a graph model was proposed,in which the superpixels were considered nodes and the associated skeleton was incorporated to enhance the capability of the graph in distinguishing body regions with similar color to the background. Each component of energy function was designed and optimal global merging result was obtained by minimizing the energy function. To evaluate the effectiveness of the proposed algorithm,several experiments on the real scenarios were compared in this paper. Experimental results show that the proposed method achieves more accurate body segmentation performance in both subjective visual and objective index comparisons

References

[1]  Graf H, Yoon S M, Malerczyk C. Real-time 3D reconstruction and pose estimation for human motion analysis [C]//<i>IEEE International Conference on</i> <i>Image Processing.<i> Hong Kong, China, 2010:3981-3984.
[2]  Liu Zhengguang, Lin Xueyan, Che Xiuge. Fuzzy entrogy segmentation method based on 2D gray histogram [J]. <i>Journal of Tianjin University</i>, 2004, 37(12):1101-1104(in Chinese).
[3]  Gulshan V, Lempitsky V, Zisserman A. Humanising GrabCut:Learning to segment humans using the Kinect [C]//<i>IEEE International Conference on Computer Vision Workshops</i>. Barcelona, Spain, 2011:1127-1133.
[4]  Fernández-Caballero A, Castillo J C, Serrano-Cuerda J, et al. Real-time human segmentation in infrared videos[J]. <i>Expert Systems with Applications</i>, 2011, 38(3):2577-2584.
[5]  Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images[J]. <i>Communications of the ACM</i>, 2013, 56(1):116-124.
[6]  Hernández-Vela A, Zlateva N, Marinov A, et al. Graphcuts optimization for multi-limb human segmentation in depth maps[C]// 2012 <i>IEEE Conference on Computer Vision and Pattern Recognition</i>. Providence, USA, 2012:726-732.
[7]  Rother C, Kolmogorov V, Blake A. Grabcut:Interactive foreground extraction using iterated graph cuts[C]//<i>ACM Transactions on Graphics</i>. New York, USA, 2004:309-314.
[8]  Junior J C S J, Jung C R, Musse S R. Skeleton-based human segmentation in still images[C]//<i>IEEE International Conference on</i> <i>Image Processing.<i> Orlando, USA, 2012:141-144.
[9]  Yang J, Gan Z, Li K, et al. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpix-
[10]  els[J]. <i>IEEE Transactions on Cybernetics</i>, 2015, 45(5):927-940.
[11]  Ye X, Yang J, Huang H, et al. Computational multi-view imaging with Kinect[J]. <i>IEEE Transactions on Broadcasting</i>, 2014, 60(3):540-554.
[12]  Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J]. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i>, 2001, 23(11):1222-1239.
[13]  Gulshan V, Rother C, Criminisi A, et al. Geodesic star convexity for interactive image segmentation [C]//2010 <i>IEEE Conference on Computer Vision and Pattern Recognition</i>. San Francisco, USA, 2010:3129-3136.</i></i></i></i>
[14]  Liu Y, Gall J, Stoll C, et al. Markerless motion capture of multiple characters using multiview image segmentation[J]. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i>, 2013, 35(11):2720-2735.
[15]  Shakhnarovich G, Viola P, Darrell T. Fast pose estimation with parameter-sensitive hashing[C]//<i>IEEE International Conference on Computer Vision</i>. Nice, France, 2003:750-757.
[16]  刘正光, 林雪燕, 车秀阁. 基于二维灰度直方图的模糊熵分割方法[J]. 天津大学学报, 2004, 37(12):1101-1104.
[17]  Li S, Lu H, Shao X. Human body segmentation via data-driven graph cut[J]. <i>IEEE Transactions on Cybernetics</i>, 2014, 44(11):2099-2108.
[18]  Palmero C, Clapés A, Bahnsen C, et al. Multi-modal RGB-depth-thermal human body segmentation[J]. <i>International Journal of Computer Vision</i>, 2016, 118(2):217-239.
[19]  Vineet V, Sheasby G, Warrell J, et al. Posefield:An efficient mean-field based method for joint estimation of human pose, segmentation, and depth[C]// <i>International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition</i>. Berlin, Heidelberg, Germany, 2013:180-194.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133