|
- 2018
基于幅值-相角判据的修正Rife正弦波频率估计算法
|
Abstract:
机械工程领域普遍存在正弦信号, 为提高频率估计精度, 提出了一种基于幅值-相角判据的修正Rife算法, 即A-P-Rife算法.针对Rife算法接近两相邻量化频率中心区域时估计精度接近克拉美-罗限(CRLB)的性能特点, 对信号进行FFT变换得到幅值和相角并计算出频移因子.通过设定门限值, 对频移因子进行判断, 满足门限值的信号采用Rife算法进行估计, 不满足门限值的信号则采用相角判据进行估计, 以获得更高的估计精度.仿真结果表明:在频率估计性能上, 所提算法优于原始Rife算法、相角判据算法和M-Rife算法, 其与I-Rife算法性能接近, 但计算量小于I-Rife算法.修正Rife算法可有效提高频率估计精度, 降低误判率并减少计算量, 可应用于工程中的实时频率估计.
Sinusoidal signal is widely encountered in mechanical engineering. A modified algorithm called A-P-Rife algorithm is presented based on the amplitude and phase criterion to improve the estimation accuracy. The frequency estimation accuracy of Rife algorithm could reach Cramer-Rao lower bound(CRLB) when the signal frequency is close to the midpoint of two neighboring discrete frequencies. The amplitude and phase of the signal are obtained by the fast Fourier transform(FFT) in order to calculate the frequency-shifting operator. By setting a threshold value,the frequency-shifting operator is judged to determine which method to employ. If the frequency-shifting operator meets the threshold value,the signal is estimated by Rife algorithm; otherwise,it is estimated by phase criterion. The simulation results indicate that the new algorithm is superior to original Rife algorithm,phase criterion algorithm and M-Rife algorithm in frequency estimation performance,and has less computation than I-Rife algorithm with similar performance. The modified algorithm effectively improves the accuracy of frequency estimation and reduces misjudgment rate. It is proved that the new method can realize real-time frequency estimation of the signal
[1] | Xu Min, Liu Lingbo. Add blackman-harris window interpolation FFT algorithm based on cubic spline function [J]. <i>Electric Power Automation Equipment</i>, 2009, 29(2):59-63(in Chinese). |
[2] | 王旭东, 刘渝, 邓振淼. 基于修正Rife算法的正弦波频率估计及FPGA实现[J]. 系统工程与电子技术, 2008, 30(4):621-624. |
[3] | Wang Xudong, Liu Yu, Deng Zhenmiao. The estimation of sine wave frequency based on the corrected Rife algorithm and FPGA implementation[J]. <i>Journal of Systems Engineering and Electronics</i>, 2008, 30(4):621-624(in Chinese). |
[4] | Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J]. <i>Bell System Technical Journal</i>, 1970, 49(2):197-228. |
[5] | 谢胜, 陈航, 于平. 基于FFT并二次修正的Rife频率估计算法[J]. 探测与控制学报, 2010, 32(4):48-53. |
[6] | 王宏伟, 赵国庆. 正弦波频率估计的改进Rife算法[J]. 信号处理, 2010, 26(10):1573-1576. |
[7] | 孙宏军, 徐冠群. 基于相角判据的Rife算法的涡街信号处理方法[J]. 仪器仪表学报, 2013, 34(12):2860-2866. |
[8] | Kay S. A fast and accurate single frequency estimator [J]. <i>IEEE Transactions</i> <i>on</i> <i>Acoustics</i>, <i>Speech</i>, <i>and Signal Processing</i>, 1989, 37(12):1987-1990. |
[9] | Rife D C, Boorstyn R R. Single tone parameter estimation from discrete-time observation[J]. <i>IEEE Trans on Information Theroy</i>, 1974, 20(5):591-598. |
[10] | 刁瑞朋, 孟庆丰, 范虹. 基于Rife-Vincent窗衰减信号插值离散傅里叶变换[J]. 机械工程学报, 2015, 51(4):1-7. |
[11] | Diao Ruipeng, Meng Qingfeng, Fan Hong. Interpola-tion algorithms based on Rife-Vincent window for discrete Fourier transforms of damped signals[J]. <i>Journal of Mechanical Engineering</i>, 2015, 51(4):1-7(in Chinese). |
[12] | Abatzoglou T J. A fast maximum likelihood algorithm for the frequency estimation of sinusoid based on Newtons method[J]. <i>IEEE Trans</i> <i>on Acoust Speech Signal Process</i>, 1985, 33(1):77-89. |
[13] | 杜保强, 周渭. 基于异频相位处理的高精度频率测量系统[J]. 天津大学学报, 2010, 43(3):262-266. |
[14] | Du Baoqiang, Zhou Wei. High precision frequency meas ure ment system based on different frequency phase processing[J]. <i>Journal of Tianjin University</i>, 2010, 43(3):262-266(in Chinese). |
[15] | 黄翔东, 白瑞朋, 靳旭康. 基于频移补偿的全相位时移相位差频率估计[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(6):649-655. |
[16] | Huang Xiangdong, Bai Ruipeng, Jin Xukang. Frequency estimation of all phase time shifted phase difference based on frequency shift compensation[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology</i>, 2017, 50(6):649-655(in Chinese). |
[17] | 邓振淼, 刘渝, 王志忠. 正弦波频率估计的修正Rife算法[J]. 数据采集与处理, 2006, 21(4):473-477. |
[18] | Deng Zhenmiao, Liu Yu, Wang Zhizhong. Modified Rife algorithm for frequency estimation of sinusoid wave [J]. <i>Journal of Data Acquisition and Processing</i>, 2006, 21(4):473-477(in Chinese). |
[19] | Sun Hongjun, Xu Guanqun. Modified Rife frequency estimation algorithm based on phase criterion for vortex signal processing[J]. <i>Chinese Journal of Scientific Instrument</i>, 2013, 34(12):2860-2866(in Chinese). |
[20] | 齐国清, 贾欣乐. 插值FFT估计正弦信号频率的精度分析[J]. 电子学报, 2004, 4(4):625-629. |
[21] | Qi Guoqing, Jia Xinle. Accuracy analysis of frequency estimation of sinusoid based on interpolated FFT[J]. <i>Acta Electronica Sinica</i>, 2004, 4(4):625-629(in Chinese). |
[22] | 胥嘉佳, 刘渝, 邓振淼, 等. 正弦波信号频率估计快速高精度递推算法的研究[J]. 电子与信息学报, 2009, 31(4):865-869. |
[23] | Xu Jiajia, Liu Yu, Deng Zhenmiao, et al. The study of frequency estimation algorithm of the sin signal with fast speed and high accuracy[J]. <i>Journal of Electronics and Information Technology</i>, 2009, 31(4):865-869(in Chinese). |
[24] | 周喜庆, 赵国庆, 王伟. 实时准确正弦波频率估计综合算法[J]. 西安电子科技大学学报:自然科学版, 2004, 31(5):657-660. |
[25] | Zhou Xiqing, Zhao Guoqing, Wang Wei. Real-time and accurate frequency estimation algorithm of the sine wave signal[J]. <i>Journal of Xidian University</i>:<i>Natural Science</i>, 2004, 31(5):657-660(in Chinese). |
[26] | Xiao Y C, Wei P, Xiao X C, et al. Fast and accurate single frequency estimator[J]. <i>Electronics Letters</i>, 2004, 40(14):910-911. |
[27] | 许珉, 刘凌波. 基于三次样条函数的加Blackman-harris窗插值FFT算法[J]. 电力自动化设备, 2009, 29(2):59-63. |
[28] | Wang Hongwei, Zhao Guoqing. Improved rife algorithm for frequency estimation of sinusoid wave[J]. <i>Signal Processing</i>, 2010, 26(10):1573-1576(in Chinese). |
[29] | Jain V K, Collins W L Jr, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. <i>IEEE Trans on Instrumentation and Measurement</i>, 1979, 28(2):113-122. |
[30] | Quinn B G. Estimation of frequency, amplitude and phase from the DFT of a time series[J]. <i>IEEE Trans on Signal Processing</i>, 1997, 45(3):814-817. |
[31] | 刁瑞朋, 孟庆丰. 基于长程泄漏补偿的迭代插值FFT方法及应用[J]. 振动与冲击, 2013, 32(22):1-6. |
[32] | Diao Ruipeng, Meng Qingfeng. Iterative interpolation FFT method and application based on long range leakage compensation[J]. <i>Journal of Vibration and Shock, </i>2013, 32(22):1-6(in Chinese). |
[33] | Xie Sheng, Chen Hang, Yu Ping. Rife frequency estimation algorithm based on FFT and twice modifying[J]. <i>Journal of Detection and Control</i>, 2010, 32(4):48-53(in Chinese). |