|
- 2018
酸性氯离子溶液中硫代硫酸根对800合金腐蚀机理
|
Abstract:
综合采用动电位极化曲线、电化学噪声(EN)技术和3D显微镜相结合, 研究了800合金在酸性模拟缝隙水化学中的腐蚀行为, 分析了S2O32-浓度对合金在酸性Cl-环境下腐蚀过程的影响与机理.实验结果表明:在含有Cl-和S2O32-的酸性溶液中, 800合金表面为活性溶解状态, 腐蚀速度较快.酸性环境中, 极微量的S2O32-对800合金在Cl-溶液中的腐蚀没有显著影响; 随着S2O32-浓度的增加, 极化曲线向电位较负方向偏移, 相同电位条件下阳极电流密度显著增加, 阴极电流略微增大.EN测试结果表明, 酸性Cl-溶液中加入0.075 mol/L S2O32-后噪声电阻降低了约2个数量级, 电流标准偏差增加了约2个数量级, 这是由于S2O32-的加入加速了合金的阳极溶解过程.
Polarization curves,combined with electrochemical noise(EN),3D microscopy,were used to study the corrosion behavior of Alloy 800 in simulated crevice water chemistry,and the effect of the concentration of thiosulfate in acidic solution containing chloride ions on corrosion resistance was analyzed. The results show that the surface of Alloy 800 is activated and dissolved in the acidic solution containing chloride and thiosulfate ions,and the corrosion rate is fast. In the acidic environment,the trace amount of reduced thiosulfate ion has no significant effect on the corrosion of the Alloy 800 in the solution containing chloride ion. With the increase of the concentration of thiosulfate ion,the polarization curve is shifted to the negative direction. And under the same potential conditions,the anode current density increases significantly. EN results show that the noise resistance is reduced by two orders of magnitude,and the current standard deviation is increased by two orders of magnitude after adding 0.075 mol/L thiosulfate ion to the acidic solution containing chloride ion. This mainly due to the addition of thiosulfate ion to accelerate the process of alloy anode corrosion
[1] | Newman R C, Isaacs H S, Alman B. Effects of sulfur compounds on the pitting behavior of type 304 stainless steel in near-neutral chloride solutions[J]. Corrosion, 1982, 38(5):261-265. |
[2] | Xia D H, Song S Z, Zhu R K, et al. A mechanistic study on thiosulfate-enhanced passivity degradation of Alloy 800 in chloride solutions[J]. Electrochim Acta, 2013, 111:510-525. |
[3] | Xia D H, Song S Z, Wang J Q, et al. Research progress on sulfur-induced corrosion of Alloys 690 and 800 in high temperature and high pressure water[J]. Acta Metall Sin, 2017, 53(12):1541-1554. |
[4] | Choudhary L, Macdonald D, Alfantazi A. Role of thiosulfate in the corrosion of steels:A review[J]. Corrosion, 2015, 71(9):1147-1168. |
[5] | Lu B T, Tian L P, Zhu R K, et al. Effects of dissolved Ca<sup>2+</sup>, and Mg<sup>2+</sup>, on passivity of UNS N08800 alloy in simulated crevice chemistries with and without Pb contamination at 300 ℃[J]. Corrosion Science, 2015, 100:1-11. |
[6] | Roberge R. Effect of the nickel content in the pitting of stainless steels in low chloride and thiosulfate solutions [J]. Corrosion, 1988, 44(5):274-280. |
[7] | Xia D H, Luo J L, Gao Z M, et al. Monitoring the diffusion layer during passive film breakdown on Alloy 800 with digital holography[J]. Acta Metall Sin(Engl Lett), 2015, 28(9):1170-1174. |
[8] | Xia D H, Zhu R K, Behnamian Y, et al. pH effect on sulfur-induced passivity degradation of Alloy 800 in simulated crevice chemistries[J]. Journal of the Electrochemical Society, 2014, 161(4):C201-C214. |
[9] | Tsai W T, Wu T F. Pitting corrosion of Alloy 690 in thiosulfate-containing chloride solutions[J]. J Nucl Mat, 2000, 277(2/3):169-174. |
[10] | 夏大海, 骆静利. 690合金在300 ℃含硫模拟碱性水化学中的腐蚀行为[J]. 物理化学学报, 2015(3):467-475. |
[11] | Xia D H, Luo J L. Corrosion behavior of Alloy 690 in simulated alkaline water chemistries containing sulfur at 300 °C [J]. Acta Phys-Chim Sin, 2015(3):467-475(in Chinese). |
[12] | 刘振凤, 翟立宏, 张忠海. 蒸汽发生器换热管与支承 板的材料及结构[J]. 一重技术, 2015(3):22-25. |
[13] | Shen C, Xia D, Fan H, et al. Passivation degradation of Alloy 800 in boiling solution containing thiosulphate [J]. Electrochim Acta, 2017, 233:13-25. |
[14] | Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors:Part 1[J]. Corrosion, 2003, 59(11):931-994. |
[15] | Liu Zhenfeng, Zhai Lihong, Zhang Zhonghai. The material and structure of the steam generator for heat exchanger and support plate[J]. CFHI Technology, 2015(3):22-25(in Chinese). |
[16] | Yuan Caolong. Study on the Corrosion Behavior of 600 Nickel-Base Alloys for Steam Generator[D]. Changsha:College of Chemistry and Biology Engineering, Changsha University of Science & Technology, 2010(in Chinese). |
[17] | Xia D H, Song S Z, Wang J H, et al. Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data [J]. Transactions of Tianjin University, 2012, 18(1):15-20. |
[18] | 李进, 许兆义, 李久义, 等. 再生水环境中304不锈钢生物膜腐蚀电化学特征[J]. 物理化学学报, 2010, 26(10):2638-2646. |
[19] | Li Jin, Xu Zhaoyi, Li Jiuyi, et al. Corrosion electrochemical characteristics of 304 stainless steel biofilms in reclaimed water environment[J]. Acta Phys-Chim Sin, 2010, 26(10):2638-2646(in Chinese). |
[20] | 韩磊. 腐蚀电化学检测中的虚拟仪器技术[D].天津:天津大学材料科学与工程学院, 2008. |
[21] | Han Lei. Corrosion Electrochemical Detection of Virtual Instrument Technology[D] Tianjin:School of Materials Science and Engineering, Tianjin University, 2008(in Chinese). |
[22] | Zhang W, Carcea A G, Newman R C. Pitting of steam-generator tubing alloys in solutions containing thiosulfate and sulfate or chloride[J]. Faraday Discussions, 2015, 180:233-249. |
[23] | Gao Z M, Wang C, Miao W H, et al. Characterization of a stressed passive film using scanning electrochemical microscope and point defect model[J]. Transactions of the Indian Institute of Metals, 2017, 70(5):1-11. |
[24] | 袁曹龙. 核电站蒸汽发生器用600镍基合金腐蚀行为的研究[D]. 长沙:长沙理工大学化学与生物工程学院, 2010. |
[25] | Cui Z, Chen S, Wang L, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater containing thiosulfate [J]. J Electrochem Soc, 2017, 164(13):C856-C868. |
[26] | Boissy C, Alemany-Dumont C, Normand B. EIS evaluation of steady-state characteristic of 316 L stainless steel passive film grown in acidic solution[J]. Electrochem Commun, 2013, 26(1):10-12. |
[27] | Lu B T, Luo J L, Lu Y C. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries[J]. Electrochim Acta, 2013, 87(1):824-838. |