全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于FPGA的粗粒度可重构系统拓扑网络结构开发
Network Topology Exploration of Coarse-Grained Reconfigurable Architecture Based on FPGA

DOI: 10.11784/tdxbz201705070

Keywords: 粗粒度可重构系统硬件验证平台,拓扑开发流程,互连拓扑网络结构
coarse-grained reconfigurable architecture hardware emulation platform
,topology exploration flow,network topology

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对粗粒度可重构系统架构的应用开发, 本文提出了一个基于FPGA的粗粒度可重构系统架构验证平台及相应的互连拓扑网络结构开发流程.基于FPGA开发板, 构建粗粒度可重构系统的验证模块及模块之间的拓扑互连被自动插入从而生成该系统架构的硬件验证平台.针对不同的应用, 该平台可以根据拓扑开发流程对不同拓扑互连策略下粗粒度可重构系统架构的性能和功耗进行评估分析.大量实验表明:CGRA的互连网络对该系统架构的性能和功耗有着巨大的影响, 最适宜的粗粒度可重构体系架构的互连策略取决于所选的拓扑结构.根据评估所获得的系统性能、功耗以及FPGA资源占用率, 设计者可以在较短的开发时间内准确地确定该应用最适宜的粗粒度可重构系统的拓扑互连策略.
With regard to the application development of coarse-grained reconfigurable architecture,a CGRA emulation platform based on FPGA and an exploration flow of network topology were presented in this paper. Based on FPGA,IP blocks(emulation blocks)and topology interconnection between IPs were inserted automatically to generate a CGRA hardware emulation platform. Following the exploration flow,the platform was used to evaluate timing performance and energy consumption of the CGRA with different topologies for different applications. The experiments demonstrate that the interconnection network of CGRA has a huge impact on timing performance and energy consumption,and the most appropriate interconnection strategy of CGRA strongly depends on the selected topology. Depending on the timing performance and energy consumption results obtained and the occupancy rate of FPGA resources,the designer can select the appropriate interconnection strategy of CGRA in a short exploration time and with precision

References

[1]  Dutta H, Kissler D, Hannig F, et al. A holistic approach for tightly coupled reconfigurable parallel processors[J]. <i>Microprocessors & Microsystems</i>, 2009, 33(1):53-62.
[2]  Vahid F, Stitt G, Lysecky R. Warp processing:Dynamic translation of binaries to FPGA circuits[J]. <i>Computer</i>, 2008, 41(7):40-46.
[3]  Singh H, Lee M H, Lu G, et al. MorphoSys:An integrated reconfigurable system for data-parallel and computation-intensive applications[J]. <i>IEEE Transactions on Computers</i>, 2000, 49(5):465-481.
[4]  Atak O, Atalar A. BilRC:An execution triggered coarse grained reconfigurable architecture[J]. <i>IEEE Transactions on Very Large Scale Integration</i>(<i>VLSI</i>) <i>Systems</i>, 2013, 21(7):1285-1298.
[5]  Lambrechts A, Raghavan P, Jayapala M, et al. Energy-aware interconnect optimization for a coarse grained reconfigurable processor[C]//21<i>st International Conference on VLSI Design</i>. Hyderabad, India, 2008:201-207.
[6]  Palkovic M, Hartmann M, Allam O, et al. Time-space energy consumption modeling of dynamic reconfigurable coarse-grain array processor datapath for wireless applications[C]//2010 <i>IEEE Workshop on Signal Processing Systems</i>(<i>SIPS</i>). San Francisco, CA, USA, 2010:134-139.
[7]  Zain-ul-Abdin, Svensson B. Evolution in architectures and programming methodologies of coarse-grained reconfigurable computing[J]. <i>Microprocessors & Microsystems</i>, 2009, 33(3):161-178.
[8]  Liu Yangfan, Liu Peng, Jiang Yingtao. Building a multi-FPGA-based emulation frame-work to support networks-on-chip design and verification[J]. <i>International Journal of Electronics-INT J Electron</i>, 2010, 97(10):1241-1262.
[9]  Taylor M B. Is dark silicon useful?:Harnessing the four horsemen of the coming dark silicon apocalypse[C]// <i>Proceeding<i> 49<i>th Design Automation Conference</i>. San Francisco, CA, USA, 2012:1131-1136.</i></i></i></i></i></i></i></i></i></i>
[10]  Cervero T, López S, Callicó G M, et al. Survey of reconfigurable architectures for multimedia applications [C]// <i>Proceedings of SPIE</i>, <i>VLSI Circuits and Systems IV</i>. Dresden, Germany, 2009:363-381.
[11]  Rossi D, Campi F, Spolzino S, et al. A heterogeneous digital signal processor for dynamically reconfigurable computing[J]. <i>IEEE Journal of Solid-State Circuits</i>, 2010, 45(8):1615-1626.
[12]  Shan Gao, Kihara T, Shimizu S, et al. A novel traffic engineering method using on-chip diorama network on dynamically reconfigurable processor DAPDNA-2[C]// <i>International Conference on High Performance Switching and Routing</i>. Paris, France, 2009:1-6.
[13]  Mei B, Sutter B D, Aa T V, et al. Implementation of a coarse-grained reconfigurable media processor for AVC decoder[J]. <i>Journal of Signal Processing Systems for Signal Image & Video Technology</i>, 2008, 51(3):225-243.
[14]  Ansaloni G, Bonzini P, Pozzi L. Heterogeneous coarse-grained processing elements:A template architecture for embedded processing acceleration[C]// <i>Proceedings of the Conference on Design</i>, <i>Automation and Test in Europe.<i> Nice, France, 2009:542-547.
[15]  Bouwens F, Berekovic M, Kanstein A, et al. Architectural exploration of the ADRES coarse-grained recon-
[16]  figurable array[C]//<i>ARC</i>2007:<i>Reconfigurable Computing</i>:<i>Architectures, Tools and Applications.<i> Mangaratiba, Brazil, 2007:1-13.
[17]  Bouwens F, Berekovic M, de Sutter B, et al. Architecture enhancements for the ADRES coarse-grained reconfigurable array[C]//<i>Proceedings of High Performance Embedded Architectures and Compilers</i>, <i>HiPEAC<i> 2008<i>.<i> G?teborg, Sweden, 2008:66-81.
[18]  Marco L, Stefania P, Pasquale C, et al. A new reconfigurable coarse-grain architecture for multimedia applications[C]//2<i>nd NASA</i>/<i>ESA Conference on Adaptive Hardware and Systems</i>. Edinburgh, UK, 2007:119-126.
[19]  Liang C, Huang X. SmartCell:A power-efficient reconfigurable architecture for data streaming applications [C]//<i>IEEE Workshop on Signal Processing Systems</i>. Washington, USA, 2008:257-262.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133