|
- 2018
基于Adaboost的无源RFID射频层析成像伪目标识别
|
Abstract:
被动式定位(DFL)中的射频层析成像(RTI)算法主要运用在无线传感器网络(WSN)中.而物联网的快速普及使得无线射频识别(RFID)网络随处可见, 所以本文提出了在无源RFID网络下实现RTI的被动式定位算法.针对多目标情况下的伪目标问题, 提出了一种基于Adaboost的机器学习算法来去除伪目标, 最终在目标数目未知的前提下实现至少3个目标的准确识别.实验结果表明提出的方法可行性很高, 在定位误差为0.7 m时目标识别准确度达到86% .
The radio tomographic imaging(RTI)algorithm in device-free localization(DFL)was mainly used in wireless sensor network(WSN). While with the rapid development of the internet of things,the wireless radio frequency identification devices(RFID)network can be seen everywhere. So the idea of realizing the RTI algorithm in passive RFID network is proposed. The Adaboost-based machine learning algorithm was presented to remove the false goal for multiple target situations. Finally,the accurate identification of at least three targets was realized on the premise that the target number was unknown. Experimental results show the feasibility of the proposed method is very high,and the target recognition accuracy reaches 86% when the position error is 0.7 m
[1] | Hong J, Ohtsuki T. Signal eigenvector-based device-free passive localization using srray sensor[J]. <i>IEEE Transactions on Vehicular Technology</i>, 2015, 64(4):1354-1363. |
[2] | Wang Ju, Chen Xiaojiang, Fang Dingyi, et al. Transferring compressive sensing based device-free localization across target diversity[J]. <i>IEEE Transactions on Industrial Electronics</i>, 2015, 62(4):2397-2409. |
[3] | 刘凯, 夏然, 柴柯. 结合菲涅尔理论的免携带设备定位研究[J]. 传感技术学报, 2015, 28(2):297-302. |
[4] | Joey Wilson, Neal Patwari. Radio tomographic imaging with wireless networks[J]. <i>IEEE Transactions on Mobile Computing</i>, 2010, 9(5):621-632. |
[5] | Zhao Yang, Neal Patwari. Noise reduction for variance-based device-free localization and tracking[C]// <i>Sensor</i>, <i>Mesh and Ad Hoc Communications and Networks.<i> Salt Lake City, USA, 2011:179-187. |
[6] | Zhao Yang, Neal Patwari. Robust estimators for variance-based device-free localization and tracking[J]. <i>IEEE Transactions on Mobile Computing</i>, 2015, 14(10):2116-2129. |
[7] | Huang Kaide, Luo Yubin, Guo Xuemei, et al. Data-efficient radio tomographic imaging with adaptive bayesian compressive sensing[C]// <i>IEEE International Conference on Information and Automation</i>. Lijiang, |
[8] | China, 2015:1859-1864. |
[9] | Wagner B, Timmermann D. Approaches for device-free multi-user localization with passive RFID[C]// <i>International Conference on Indoor Positioning and Indoor Navigation.<i> New York, USA, 2013:1-6. |
[10] | Wunderlich A, Goossens B, Abbey C K. Optimal joint detection and estimation that maximizes ROC-type curves[J]. <i>IEEE Transactions on Medical Imaging</i>, 2016, 35(9):2164-2173.</i></i></i></i></i></i> |
[11] | Hamilton B R, Ma X L, Baxley R J, et al. Propagation modeling for radio frequency tomography in wireless networks[J]. <i>IEEE Journal of Selected Topics in Signal Processing</i>, 2014, 8(1):55-65. |
[12] | Ossi K, Maurizio B, Neal P. A fade level-based spatial model for radio tomographic imaging[J]. <i>IEEE Transactions on Mobile Computing</i>, 2014, 13(6):1159-1172. |
[13] | Lei Qian, Zhang Haijian, Sun Hong, et al. A new elliptical model for device-free localization[J]. <i>Sensors</i>, 2016, 16(4):577. |
[14] | Wang Jie, Gao Qinghua, Yu Yan, et al. Time and energy efficient TOF-based device-free wireless localization[J]. <i>IEEE Transactions on Industrial Informatics</i>, 2016, 12(1):158-168. |
[15] | Talampas M C R, Low K S. A geometric filter algorithm for robust device-free localization in wireless networks [J]. <i>IEEE Transactions on Industrial Informatics</i>, 2016, 12(5):1670-1678. |
[16] | Wang Jie, Zhang Xiao, Gao Qinghua, et al. Device-free wireless localization and activity recognition:A deep learning approach[J]. <i>IEEE Transactions on Vehicular Technology</i>, 2017, 66(7):6258-6267. |
[17] | Youssef M, Mah M, Agrawala A. Challenges:Device-free passive localization for wireless environments[C]// <i>ACM International Conference on Mobile Computing and Networking</i>. New York, USA, 2007:222-229. |
[18] | Zhou Zimu, Yang Zheng, Wu Chenshu, et al. Omnidirectional coverage for device-free passive human detection[J]. <i>IEEE Transactions on Parallel and Distributed Systems</i>, 2014, 25(7):1819-1829. |
[19] | Wang Jie, Gao Qinhua, Pan Miao, et al. Towards accurate device-free wireless localization with a saddle surface model[J]. <i>IEEE Transactions on Vehicular Technology</i>, 2016, 65(8):6665-6677. |
[20] | Brad M, Philip L, Neal P. Fingerprint-based device-free localization performance in changing environments [J]. <i>IEEE Journal on Selected Areas in Communicat-ions</i>, 2015, 33(11):2429-2438. |
[21] | Wang Jie, Gao Qinghua, Wang Hongyu, et al. Device-free localization with multidimensional wireless link information[J]. <i>IEEE Transactions on Vehicular Technology</i>, 2015, 64(1):356-366. |
[22] | Liu Kai, Xia Ran, Chai Ke. The study of device free localization with wireless networks based on fresnel theory[J]. <i>Chinese Journal of Sensors and Actuators</i>, 2015, 28(2):297-302(in Chinese). |
[23] | Neal Patwari, Piyush Agrawal. Effects of correlated shadowing:Connectivity, localization, and RF tomo-graphy[C]//<i>International Conference on Information Processing in Sensor Networks.<i> New York, USA, 2008:82-93. |
[24] | Lieckfeldt Dominik, You Jiaxi, Timmermann Dirk. Characterizing the Influence of human presence on bistatic passive RFID-System[C]//<i>IEEE International Conference on Wireless and Mobile Computing</i>, <i>Networking and Communications</i>. Marrakech, Morocco, 2009:338-343. |
[25] | Canovas O, Lopez-De-Teruel P E, Ruiz A. Detecting indoor/outdoor places using WiFi signals and adaBoost [J]. <i>IEEE Sensors Journal</i>, 2017, 17(5):1443-1453. |