全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于DPSO-GT-SA算法的大规模UCAV协同任务分配
Cooperative Task Allocation of Large-Scale UCAV Based on DPSO-GT-SA Algorithm

DOI: 10.11784/tdxbz201711069

Keywords: 大规模无人作战飞机,协同任务分配,改进离散粒子群优化,模拟退火
large-scale UCAV
,cooperative task allocation,improved discrete particle swarm optimization(IDPSO),simulated annealing

Full-Text   Cite this paper   Add to My Lib

Abstract:

无人作战飞机(UCAV)编队任务分配是研究UCAV编队飞行作战的关键.针对复杂约束环境下大规模UCAV协同任务分配问题, 提出改进离散粒子群算法.根据现有UCAV编队空对地饱和作战模式, 建立UCAV编队作战环境中任务分配模型, 通过采用离散粒子群优化-郭涛-模拟退火算法(DPSO-GT-SA)进行求解.根据粒子编码方式建立粒子与UCAV及目标之间的映射, 通过粒子交叉变异进行搜索与寻优, 并通过模拟退火Metropolis准则跳出局部最优.在复杂约束条件下, 为解决离散粒子群-郭涛算法(DPSO-GT)陷入局部极小问题, 引入改进模拟退火算法.为解决模拟退火后期收敛速度慢问题, 在DPSO-GT-SA算法中加入动态温度衰减因子.仿真结果表明, 改进离散粒子群算法可以更好地解决大规模UCAV协同任务分配问题.
Task allocation of unmanned combat aircraft vehicle(UCAV)is the key to UCAV formation flying campaign. An improved discrete particle swarm optimization(IDPSO)algorithm is proposed for large-scale UCAV cooperative task allocation in complex constraint environment. According to the existing multi-UCAV formation saturation combat mode of air to ground,the multiple UCAV formation task allocation model in combat environment is established. Discrete particle-GuoTao-simulated annealing(DPSO-GT-SA)algorithm is used to solve the problem. According to the particle coding method,the mapping between the UCAV,the target and the particle is established. The exploitation and exploration are based on crossover and mutation of particles,and the local optimum is jumped out by Metropolis criterion of simulated annealing. In order to solve the problem that the DPSO-GT algorithm falls into local minimum,the improved simulated annealing is introduced. As to the problem of slow convergence at the later stage of simulated annealing,a dynamic temperature attenuation factor in DPSO-GT-SA algorithm is proposed. The simulation results show that the improved discrete particle swarm optimization algorithm can better solve the large-scale UCAV cooperative task allocation problem

References

[1]  Haddar B, Khemakhem M, Rhimi H, et al. A quantum particle swarm optimization for the 0-1 generalized knapsack sharing problem[J]. <i>Natural Computing</i>, 2016, 15(1):153-164.
[2]  <i>Solving From Nature.<i> Heidelberg, Germany, 1998:803-812.
[3]  Zheng Dongliang, Xue Yuncan, Yang Qiwen, et al. Modified discrete particle swarm optimization algorithm based on inver-over operator[J]. <i>Pattern Recognition and Artificial Intelligence</i>, 2010, 23(1):97-102(in Chinese).
[4]  颜骥, 李相民, 刘波. 应用离散粒子群-郭涛算法分配多无人机协同任务[J]. 国防科技大学学报, 2015, 37(4):165-171.
[5]  Yan Ji, Li Xiangmin, Liu Bo. Cooperative task allocation of multi-UAVs with mixed DPSO-GT algorithm[J]. <i>Journal of National University of Defense Technology</i>, 2015, 37(4):165-171(in Chinese).
[6]  李俨, 董玉娜. 基于SA-DPSO混合优化算法的协同空战火力分配[J]. 航空学报, 2010, 31(3):626-631.
[7]  Li Yan, Dong Yuna. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat[J]. <i>Acta Aeronautica Et Astronautica Sinica</i>, 2010, 31(3):626-631(in Chinese).
[8]  Jiang J, Liu H, Feng H, et al. Embedded static task allocation and scheduling based on simulated annealing and genetic algorithm[J]. <i>Journal of Computational Information Systems</i>, 2014, 10(4):1465-1472.
[9]  罗德林, 吴顺祥, 段海滨, 等. 无人机协同多目标攻击空战决策研究[J]. 系统仿真学报, 2008, 20(24):6778-6782.
[10]  Luo Delin, Wu Shunxiang, Duan Haibin, et al. Air-combat decision-making for UAVs cooperatively attacking multiple targets[J]. <i>Journal of System Simulation</i>, 2008, 20(24):6778-6782(in Chinese).</i></i></i></i></i></i></i></i>
[11]  Mao Hongbao, Tian Song, Chao Ainong, et al. <i>UAV Mission Planning</i>[M]. Beijing:National Defense Industry Press, 2015(in Chinese).
[12]  Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[C]//<i>IEEE International Conference on Systems</i>, <i>Man</i>, <i>and Cybernetics</i>. Orlando, USA, 1997, 5(5):4104-4108.
[13]  Chen E, Li J, Liu X. In search of the essential binary discrete particle swarm[J]. <i>Applied Soft Computing</i>, 2011, 11(3):3260-3269.
[14]  Ktari R, Chabchoub H. Essential particle swarm optimization queen with Tabu search for MKP resolution[J]. <i>Computing</i>, 2013, 95(9):897-921.
[15]  Kumar N, Vidyarthi D P. A novel hybrid PSO-GA meta-heuristic for scheduling of DAG with communication on multiprocessor systems[J]. <i>Engineering with Computers</i>, 2016, 32(1):35-47.
[16]  López L F M, Blas N G, Albert A A. Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations[J]. <i>Soft Computing</i>, 2018, 22(8):2567-2582.
[17]  Yin Gaoyang, Zhou Shaolei, He Pengcheng, et al. Research status and development trend of cooperative task allocation for multiple UAVs in foreign countries[J]. <i>Aerodynamic Missile Journal</i>, 2016(5):54-58(in Chinese).
[18]  Wan Lujun, Yao Peiyang, Shui Dongdong, et al. Dynamic task allocation methods in multiple groups using IVFSA[J]. <i>Electronics Optics & Control</i>, 2014, 21(5):43-49(in Chinese).
[19]  颜骥, 李相民, 刘波, 等. 基于MILP的多无人机对敌防空火力压制[J]. 海军航空工程学院学报, 2014, 29(4):369-373.
[20]  Yan Ji, Li Xiangmin, Liu Bo, et al. Multi UAV suppression of on enemy air defense based on MILP[J]. <i>Journal of Naval Aeronautical Engineering Institute</i>, 2014, 29(4):369-373(in Chinese).
[21]  Zhu X, Sim K M, Jiang J, et al. Agent-based dynamic scheduling for earth-observing tasks on multiple airships in emergency[J]. <i>IEEE Systems Journal</i>, 2017, 10(2):661-672.
[22]  Lee D H, Zaheer S A, Kim J H. A resource-oriented, decentralized auction algorithm for multi-robot task allocation[J]. <i>IEEE Transactions on Automation Science & Engineering</i>, 2015, 12(4):1469-1481.
[23]  毛红保, 田松, 晁爱农, 等. 无人机任务规划[M]. 北京:国防工业出版社, 2015.
[24]  Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. <i>Science</i>, 1983, 220(4598):671-680.
[25]  尹高扬, 周绍磊, 贺鹏程, 等. 国外多无人机协同任务分配研究现状及发展趋势[J]. 飞航导弹, 2016(5):54-58.
[26]  Tsiogkas N, Saigol Z, Lane D. Distributed multi-AUV cooperation methods for underwater archaeology[C]//<i>Oceans.<i> Genova, Italy, 2015:1-5.
[27]  Li J T, Zhang S, Zheng Z, et al. Research on multi-UAV loading multi-type sensors cooperative reconnaissance task planning based on genetic algorithm[C]//<i>International Conference on Intelligent Computing.<i> Liverpool, UK, 2017:485-500.
[28]  Hojda M. Comparison of algorithms for constrained multi-robot task allocation[J]. <i>Advances in Systems Science</i>, 2017, 539:255-264.
[29]  万路军, 姚佩阳, 税冬东, 等. 多编组任务分配动态优化模型及IVFSA算法求解[J]. 电光与控制, 2014, 21(5):43-49.
[30]  Guo T, Michalewicz Z. Inver-over operator for the TSP[C]//<i>International Conference on Parallel Problem<i>
[31]  郑东亮, 薛云灿, 杨启文, 等. 基于Inver-over算子的改进离散粒子群优化算法[J]. 模式识别与人工智能, 2010, 23(1):97-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133