|
- 2017
无源标签多径环境下基于凸优化的定位算法
|
Abstract:
在室内无源超高频RFID定位中, 多径传播对定位结果的影响不可忽视.为了提高复杂多径环境下的定位精度, 提出了基于半定规划(SDP)和二阶锥规划(SOCP)的相位差欧式距离拟合定位算法.运用参考标签的位置信息, 对参考标签之间的理想相位差欧氏距离与实际距离进行拟合, 实现标签之间的距离估计.建立待定位标签与阅读器、参考标签距离估计模型, 将多径传播、高斯白噪声、相位差欧氏距离拟合引起的距离估计误差等效为正态分布, 利用参考标签的相位差信息和位置信息计算出正态分布参量.仿真结果表明, 提出的算法在最大多径数目为7时, 定位误差有90% 的概率低于2.3 m, 定位性能优于传统的基于测距的定位算法.
The effect of multipath propagation can’t be neglected when it comes to localization in indoor passive UHF RFID system. To improve the localization accuracy in dense multipath environment,the phase difference Euclidean distance fitting localization algorithms based on semi-definite programming(SDP)and second-order cone programming(SOCP)were proposed. The location information of reference tags was utilized to establish the relationship between ideal phase difference Euclidean distance and the real distance of reference tags. Therefore,the distance between tags could be estimated. The distance estimation model of tracking tags,readers and reference tags was established. Then,the effect of multipath propagation,Gauss white noise and the phase difference Euclidean distance fitting on distance estimation were modeled as normal distribution. Simulation results show that the localization error of the convex relaxation method is less than 2.3 m with the probability of 90% when the maximum number of multipath is 7,which outperforms the traditional range-based localization algorithms
[1] | Zhao Y, Liu K, Ma Y, et al. An improved k-NN algorithm for localization in multipath environments[J]. <i>EURASIP Journal on Wireless Communications and Networking</i>, 2014(1):1-10. |
[2] | Ma Y, Zhou L, Liu K, et al. Iterative phase reconstruction and weighted localization algorithm for indoor RFID-based localization in NLOS environment[J]. <i>IEEE Sensors Journal</i>, 2014, 14(2):597-611. |
[3] | Jiang Q, Ma Y, Liu K, et al. A probabilistic radio map construction scheme for crowdsourcing-based fingerprinting localization[J]. <i>IEEE Sensors Journal</i>, 2016, 16(10):3764-3774. |
[4] | Arnitz D, Muehlmann U, Witrisal K. Characterization and modeling of UHF RFID channels for ranging and localization[J]. <i>IEEE Transactions on Antennas and Propagation</i>, 2012, 60(5):2491-2501. |
[5] | Lazaro A, Girbau D, Salinas D. Radio link budgets for UHF RFID on multipath environments [J]. <i>IEEE Transactions on Antennas and Propagation</i>, 2009, 57(4):1241-1251. |
[6] | Nikitin P V, Martinez R, Ramamurthy S, et al. Phase based spatial identification of UHF RFID tags [C]//2010 <i>IEEE International Conference on RFID</i>. Orlando, USA, 2010:14-16. |
[7] | G?rtschacher L, Grosinger J, Khan H N, et al. SDR based RFID reader for passive tag localization using phase difference of arrival techniques[C]//<i>International Microwave Symposium.<i> San Francisco, USA, 2016:1-4. |
[8] | Guo Y, Huang K, Jiang N, et al. An exponential-rayleigh model for RSS-based device-free localization and tracking[J]. <i>IEEE Transactions on Mobile Computing</i>, 2015, 14(3):484-494. |
[9] | Scherh?ufl M, Pichler M, Stelzer A. UHF RFID localization based on evaluation of backscattered tag signals [J]. <i>IEEE Transactions on Instrumentation and Measurement</i>, 2015, 64(11):2889-2899. |
[10] | Jaffe A, Wax M. Single-site localization via maximum discrimination multipath fingerprinting[J]. <i>IEEE Transactions on Signal Processing</i>, 2014, 62(7):1718-1728. |
[11] | Wang J, Ma Y, Zhao Y, et al. A multipath mitigation localization algorithm based on MDS for passive UHF RFID[J]. <i>IEEE Communications Letters</i>, 2015, 19(9):1652-1655. |
[12] | Wang G, Chen H, Li Y, et al. NLOS error mitigation for ToA-based localization via convex relaxation[J]. <i>IEEE Transactions on Wireless Communications</i>, 2014, 13(8):4119-4131.</i></i> |
[13] | Yang P, Wu W, Moniri M, et al. Efficient object localization using sparsely distributed passive RFID tags [J]. <i>IEEE Transactions on Industrial Electronics</i>, 2013, 60(12):5914-5924. |
[14] | Nguyen N H, Do?an?ay K. Optimal geometry analysis for multistatic TOA localization[J]. <i>IEEE Transactions on Signal Processing</i>, 2016, 64(16):4180-4193. |
[15] | Jiang W, Xu C, Pei L, et al. Multidimensional scaling-based TDOA localization scheme using an auxiliary line[J]. <i>IEEE Signal Processing Letters</i>, 2016, 23(4):546-550. |
[16] | Wang Y, Ho K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. <i>IEEE Transactions on Wireless Communications</i>, 2015, 14(12):6524-6535. |
[17] | Scherhaufl M, Pichler M, Schimback E, et al. Indoor localization of passive UHF RFID tags based on phase-of-arrival evaluation[J]. <i>IEEE Transactions on Microwave Theory and Techniques</i>, 2013, 61(12):4724-4729. |