全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

(ITO)x(SiO2)1-x纳米颗粒薄膜的电输运性质
Electrical Transport Properties of(ITO)x(SiO2)1-x Nanogranular Films

DOI: 10.11784/tdxbz201605098

Keywords: 纳米颗粒薄膜,电输运性质,跳跃电导,热涨落诱导隧穿
nanogranular films
,electronic transport properties,hopping conductance,thermal fluctuation induced tunneling

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了理解三维纳米颗粒薄膜体系中电子的跳跃传导行为, 采用射频磁控溅射法在玻璃基片上制备了一系列不同Sn:In2O3(ITO)体积分数的三维(ITO)x(SiO2)1-x纳米颗粒薄膜样品, 对绝缘性样品在2~300 K温度范围内电导率与温度的关系进行了系统研究. 在低温区(<120 K), 电导率与温度遵从的关系, 体系的电子输运机制符合Abeles等提出的跳跃传导模型, 电子的输运以颗粒间的跳跃为主, 颗粒库仑充电能主导着颗粒间电子的输运过程. 而在高温区, 体系的电子输运机制符合热涨落诱导的隧穿导电模型, 热涨落电势主导着颗粒间电子的输运过程.
A series of(ITO)x(SiO2)1-x(here ITO is the abbreviation of Sn doped In2O3)nanogranular films with different ITO volume fractions were deposited on glass substrates by the RF magnetron co-sputtering method. To systematically investigate the charge transport mechanisms in these samples,the dependence of conductivity on temperature was measured over a wide range of temperature from 300 K down to liquid-helium temperatures. The conductivity of the films bears the relation  to temperature below 120 K,and it can be explained by the hopping conductance model proposed by Abeles et al,in which the transport of electrons is dominated by the hopping processes,and the origin of the activation energy is the Coulomb charging energy between particles. While at higher temperatures,the electrical transport mechanism is according with the fluctuation induced tunneling model,in which the thermally activated voltage fluctuations across insulating barriers plays an important role

References

[1]  Pakhomov A B, Yan X, Zhao B. Giant Hall effect in percolating ferromagnetic granular metal-insulator films [J]. <i>Applied Physics Letters</i>, 1995, 67(23):3497-3499.
[2]  Hoffmann C, Mazari E, Lallet S, et al. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles[J]. <i>Nature Nanotechnology</i>, 2013, 8(3):199-205.
[3]  Sheng P, Abeles B, Arie Y. Hopping conductivity in granular metals[J]. <i>Physical Review Letters</i>, 1973, 31(1):44-47.
[4]  Sheng P, Klafter J. Hopping conductivity in granular disordered systems[J]. <i>Physical Review B</i>, 1983, 27(4):2583-2586.
[5]  Chui T, Deutscher G, Lindenfeld P, et al. Conduction in granular aluminum near the metal-insulator transition [J]. <i>Physical Review B</i>, 1981, 23(11):6172-6175.
[6]  Beloborodov I S, Lopatin A V, Vinokur V M. Coulomb effects and hopping transport in granular metals[J]. <i>Physical Review B</i>, 2005, 72(12):125121-1-125121-20.
[7]  Li Z Q, Lin J J. Electrical resistivities and thermopowers of transparent Sn-doped indium oxide films[J]. <i>Journal of Applied Physics</i>, 2004, 96(10):5918-5920.
[8]  Wu C Y, Thanh T V, Chen Y F, et al. Free-electronlike diffusive thermopower of indium tin oxide thin films[J]. <i>Journal of Applied Physics</i>, 2010, 108(12):123708-1-123708-3.
[9]  Hsu Y W, Chiu S P, Lien A S, et al. Long electron dephasing length and disorder-induced spin-orbit coupling in indium tin oxide nanowires[J]. <i>Physical Review B</i>, 2010, 82(19):195429-1-195429-6.
[10]  Liu X D, Jiang E Y, Zhang D X. Electrical transport properties in indium tin oxide films prepared by electron-beam evaporation[J]. <i>Journal of Applied Physics</i>, 2008, 104(7):073711-1-073711-5.
[11]  Berkowitz A E, Mitchell J R, Carey M J, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys[J]. <i>Physical Review Letters</i>, 1992, 68(25):3745-3748.
[12]  Zhang X X, Wan C, Liu H, et al. Giant Hall effect in nonmagnetic granular metal films[J]. <i>Physical Review Letters</i>, 2001, 86(24):5562-5565.
[13]  Wu Y N, Li Z Q, Lin J J. Giant Hall effect in nonmagnetic Mo/SnO<sub>2</sub> granular films[J]. <i>Physical Review B</i>, 2010, 82:092202-1-092202-4.
[14]  Park Y, Choong V, Gao Y, et al. Work function of indium tin oxide transparent conductor measured by pho-
[15]  Williams R. Photoemission of electrons from silicon into silicon dioxide[J]. <i>Physical Review</i>, 1965, 140 (2A):A569-A575.
[16]  Sheng P. Fluctuation-induced tunneling conduction in disordered materials[J]. <i>Physical Review B</i>, 1980, 21(6):2180-2195.
[17]  Sheng P, Sichel E K, Gittleman J I. Fluctuation-induced tunneling conduction in carbon-polyvinylchlo-ride composites[J]. <i>Physical Review Letters</i>, 1978, 40(18):1197-1200.
[18]  Sichel E K, Gittleman J I, Sheng P. Transport properties of the composite material carbon-poly(vinyl chloride)[J]. <i>Physical Review B</i>, 1978, 18(10):5712-5716.
[19]  Ping D H, Ohnuma M, Hono K, et al. Microstructures of FePt-Al-O and FePt-Ag nanogranular thin films and their magnetic properties[J]. <i>Journal of Applied Physics</i>, 2001, 90(9):4708-4716.
[20]  Stavroyiannis S, Panagiotopoulos I, Niarchos D, et al. CoPt/Ag nanocomposites for high density recording media[J]. <i>Applied Physics Letters</i>, 1998, 73(23):3453-3455.
[21]  Gerber A. Towards Hall effect spintronics[J]. <i>Journal of Magnetism and Magnetic Materials</i>, 2007, 310(2):2749-2751.
[22]  Abeles B, Sheng P, Coutts M D, et al. Structural and electrical properties of granular metal films[J]. <i>Advances in Physics</i>, 1975, 24(3):407-461.
[23]  Hauser J J. Electrical and structural properties of amorphous metal-metal-oxide systems[J]. <i>Physical Review B</i>, 1973, 7(9):4099-4111.
[24]  Tran T B, Beloborodov I S, Hu J, et al. Sequential tunneling and inelastic cotunneling in nanoparticle arrays [J]. <i>Physical Review B</i>, 2008, 78(7):075437-1-075437-9.
[25]  Dugay J, Tan R P, Ibrahim M, et al. Charge transport and interdot coupling tuned by the tunnel barrier length in assemblies of nanoparticles surrounded by organic ligands[J]. <i>Physical Review B</i>, 2014, 89(4):041406-1-041406-5.
[26]  ?imánek E. The temperature dependence of the electrical resistivity of granular metals[J]. <i>Solid State Communications</i>, 1981, 40(11):1021-1023.
[27]  Beloborodov I S, Lopatin A V, Vinokur V M, et al. Granular electronic systems[J]. <i>Reviews of Modern Physics</i>, 2007, 79(2):469-518.
[28]  Hamberg I, Granqvist C G, Berggren K F, et al. Band-gap widening in heavily Sn-doped In<sub>2</sub>O<sub>3</sub>[J]. <i>Physical Review B</i>, 1984, 30(6):3240-3249.
[29]  M?bius A. Comment on‘Critical behavior of the zero-temperature conductivity in compensated silicon, Si:(P, B)’[J]. <i>Physical Review B</i>, 1989, 40(6):4194-4195.
[30]  toelectron spectroscopy[J]. <i>Applied Physics Letters</i>, 1996, 68(19):2699-2701.
[31]  Xie H, Sheng P. Fluctuation-induced tunneling conduction through nanoconstrictions[J]. <i>Physical Review B</i>, 2009, 79(16):165419-1-165419-10.
[32]  Ederth J, Johnsson P, Niklasson G A, et al. Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles[J]. <i>Physical Review B</i>, 2003, 68(15):155410-1-155410-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133