|
- 2017
不跨层行操作并行RCA互连时延性能评估
|
Abstract:
针对三类行并行重构单元阵列互连时延性能评估问题, 提出了一种通过节点映射和运行机制来评测互连时延的方法, 基于前驱回溯不加旁节点不跨层时域映射算法, 对点到点、路由传输、行列总线等互连RCA进行了时延分析和计算.实验结果表明, 与路由传输和行列总线互连相比, 点到点互连在最大不跨层互连、不跨层累加互连、考虑互连执行总时延等方面均是最小的, 从而表明了点到点重构单元阵列的互连时延优于路由器传输和行列总线互连.
In order to assess three types of row parallel recon?gurable cell array(RCA)interconnect delay performance,this paper presented a method for evaluating interconnect delay by means of node mapping and operation running mechanism. Based on preorder traversing backtracking no adding-bypass-node(PTBNA)non-crossing level temporal mapping algorithm,this paper analyzed and computed RCA interconnect delay of point to point(PP),router transmission(RT),and row column bus(RCB). Compared with RT and RCB,PP can get the least in maximum non-crossing level interconnect delay,non-crossing level accumulation interconnect delay and considering interconnect execution total delay. Thus PP-RCA interconnect delay is better than that of RT and RCB
[1] | Mei B, Vernalde S, Verkest D, et al. ADRES:An architecture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix [C]// <i>Proceedings of<i> 13<i>th International Conference on Field Programmable Logic and Application</i>. Lisbon, Portugal, 2003:61-70. |
[2] | Wei Shaojun, Liu Leibo, Yin Shouyi. Key techniques of reconfigurable computing processor[J]. <i>Scientia Sinica</i>:<i>Informationis</i>, 2012, 42(12):1559-1576 (in Chinese). |
[3] | 窦勇, 邬贵明, 徐进辉, 等. 支持循环自流水的粗粒度可重构阵列体系结构[J]. 中国科学:信息科学, 2008, 38(4):579-591. |
[4] | Dou Yong, Wu Guiming, Xu Jinhui, et al. A coarse-grained reconfigurable computing architecture with loop self-pipelining[J]. <i>Scientia Sinica</i>:<i>Informationis</i>, 2008, 38(4):579-591(in Chinese). |
[5] | Miyamori T, Olukotun K, Budiu M, et al. REMARC:Reconfigurable multimedia array coproces-sor[J]. <i>IEICE Transactions on Information and Systems</i>, 1999, E82-D(2):389-397. |
[6] | Berekovic M, Kanstein A, Mei B, et al. Mapping of nomadic multimedia applications on the ADRES reconfigurable array processor[J]. <i>Microprocessors and Microsystems</i>, 2009, 33(4):290-294. |
[7] | Kim Y, Lee J, Mai T, et al. Improving performance of nested loops on reconfigurable array processors [J]. <i>ACM Transactions on Architecture and Code Optimization</i>, 2012, 8(4):1-32. |
[8] | Zhao X, Erdogan A T, Arslan T. High-efficiency customized coarse-grained dynamically reconfigurable architecture for JPEG2000[J]. <i>IEEE Transactions on Very Large Scale Integration Systems</i>, 2013, 21(12):2343-2348. |
[9] | Cardoso J M P, Diniz C D, Weinhardt M. Compiling for reconfigurable computing:A survey [J]. <i>ACM Computing Surveys</i>, 2010, 42(4):1301-1365. |
[10] | Singh H, Lee M H, Lu G M, et al. MorphoSys:An integrated reconfigureable system for data parallel and computation intensive applications[J]. <i>IEEE Transactions</i> |
[11] | <i>on Computers</i>, 2000, 49(5):465-481. |
[12] | 王大伟, 窦勇, 李思昆. 核心循环到粗粒度可重构体系结构的流水化映射[J]. 计算机学报, 2009, 32(6):1089-1099. |
[13] | Wang Dawei, Dou Yong, Li Sikun. Loop kernel pipelining mapping onto coarse-grained reconfigurable architectures[J]. <i>Chinese Journal of Computers</i>, 2009, 32(6):1089-1099(in Chinese). |
[14] | 孙康. 可重构计算相关技术研究[D]. 杭州:浙江大学计算机科学与技术学院, 2007. |
[15] | Sun Kang. Research on Reconfigurable Computing Technologies[D]. Hangzhou:College of Computer Science and Technology, Zhejiang University, 2007(in Chinese).</i></i> |
[16] | 魏少军, 刘雷波, 尹首一. 可重构计算处理器技术[J]. 中国科学:信息科学, 2012, 42(12):1559-1576. |
[17] | Janakiraman N, Nirmalkumar P, Akram S M. Coarse grained ADRES based MIMO-OFDM transceiver with new radix-25 pipeline FFT/IFFT processor[J]. <i>Circuits, Systems</i>, <i>and Signal Processing</i>, 2015, 34(3):851-873. |
[18] | 陈乃金, 冯志勇, 江建慧. 用于二维RCA跨层数据传输的旁节点无冗余添加算法[J]. 通信学报, 2015, 36(4):1-17. |
[19] | Chen Naijin, Feng Zhiyong, Jiang Jianhui. Bypass node non-redundant adding algorithm for crossing-level data transmission in two-dimension reconfigurable cell array[J]. <i>Journal on Communications</i>, 2015, 36(4):1-17(in Chinese). |