全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于非局部稀疏表示的立体图像的超分辨率重建
Stereo Image Super-Resolution Reconstruction Based on Non-Local Sparse Representation

DOI: 10.11784/tdxbz201506020

Keywords: 超分辨率重建,稀疏表示,联合特征图像块,立体图像,联合字典学习
super-resolution reconstruction
,sparse representation,joint characteristic image tiles,stereo image,joint dictionary learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对在立体图像的超分辨率重建过程中, 需要分别对低分辨率的彩图和同场景的深度图进行超分辨率重建的问题, 提出了一种基于联合稀疏表示的立体图像的超分辨率重建方法.该方法在非局部中心稀疏表示重建方法的基础上, 利用彩色图像与同场景深度图像的耦合相关性, 通过构造联合特征图像块来学习彩色和深度图像的联合字典; 然后构造彩色和深度图像块的联合编码增量作为正则项, 利用迭代优化算法求解模型, 进而同时重建高分辨率的彩色和深度图像.为验证算法的有效性, 在Middlebury数据集上对重建结果进行了主、客观评估, 并与不同算法进行了比较. 实验结果表明, 在客观指标和主观视觉效果上, 本文提出的算法可以同时获得令人满意的彩图和高质量的深度图.
To resolve the stereo image super-resolution reconstruction problem of reconstructing the color image and its corresponding depth map in the same scene respectively,a stereo image super-resolution reconstruction method based on the joint sparse representation is proposed in this paper. The model is developed based on the nonlocal center sparse representation method,using the correspondence between the color image and the depth map of the same scene. The joint dictionary is learned through joint characteristic image tiles construction. Then regularize the problem with joint coding increments of color and depth image tiles. Subsequently,an iterative optimization algorithm is applied to solve the proposed model. The high-resolution color image and its corresponding depth image are restored simultaneously. To evaluate the effectiveness of the proposed algorithm,several experiments on the Middlebury dataset are conducted,and the proposed algorithm and different methods in both objective indexes and subjective visual experience are compared. The experimental results show that the proposed algorithm achieves satisfactory super-resolution results in both objective indexes and subjective visual comparisons

References

[1]  Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution [J]. <i>Computer Graphics and Applications</i>, 2002, 22(2):56-65.
[2]  Hou H S, Andrews H. Cubic splines for image interpolation and digital filtering[J]. <i>IEEE Transactions on Acoustics</i>, <i>Speech and Signal Processing</i>, 1978, 26(6):508-517.
[3]  杨爱萍, 钟腾飞, 何宇清, 等. 基于非局部相似性和分类半耦合字典学习的超分辨率重建[J]. 天津大学学报:自然科学与工程技术版, 2015, 48(1):87-94.
[4]  Yang Aiping, Zhong Tengfei, He Yuqing, et al. Super-resolution reconstruction based on non-local similarity and clustered semi-coupled dictionary learning[J]. <i>Journal of Tianjin University</i>:<i>Science and Technology, </i>2015, 48(1):87-94(in Chinese).
[5]  刘哲, 张永亮, 郝珉慧, 等. 一种快速超分辨率图像重建算法[J]. 光电子?激光, 2013, 24(2):372-377.
[6]  Yang J, Wang Z, Lin Z, et al. Coupled dictionary training for image super-resolution[J]. <i>IEEE Transactions on Image Processing</i>, 2012, 21(8):3467-3478.
[7]  Schulter S, Leistner C, Bischof H. Fast and accurate image upscaling with super-resolution forests[C]// <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition</i>. Boston, USA, 2015:3791-3799.
[8]  Jing X Y, Zhu X, Wu F, et al. Super-resolution person re-identification with semi-coupled low-rank discriminant dictionary learning [C]// <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition</i>. Boston, USA, 2015:695-704.
[9]  Zhu K, Lin F. Image super-resolution reconstruction by sparse decomposition and scale-invariant feature retrieval in micro-UAV stereo vision [C]//<i>IEEE International Conference on Control and Automatio</i>n. Taichung, Taiwan, China, 2014:705-710.
[10]  Lu J, Forsyth D. Sparse depth super resolution [C]//<i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.<i> Boston, USA, 2015:2245-2253.
[11]  Kiechle M, Hawe S, Kleinsteuber M. A joint intensity and depth co-sparse analysis model for depth map super-resolution [C]//2013 <i>IEEE International Conference on Computer Vision.</i> Sydney, Australia, 2013:1545-1552.
[12]  Dong W, Zhang L, Shi G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization [J]. <i>IEEE Transactions on Image Processing, </i>2011, 20(7):1838-1857.
[13]  Daubechies I, Defrise M, de Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. <i>Communications on Pure and Applied Mathematics</i>, 2003, 57(11):1413-1457.
[14]  Ferstl D, Reinbacher C, Ranftl R, et al. Image guided depth up-sampling using anisotropic total generalized variation [C]//2013 <i>IEEE International Conference on Computer Vision.<i> Sydney, Australia, 2013:993-1000.</i></i></i></i>
[15]  Keys R G. Cubic convolution interpolation for digital im-age processing[J]. <i>IEEE Transactions on</i> <i>Acoustics</i>, <i>Speech and Signal Processing</i>, 1981, 29(6):1153-1160.
[16]  Chang H, Yeung D, Xiong Y. Super-resolution through neighbor embedding [C]//<i>IEEE Conference on Computer Vision & Patter Recognition</i>. Washington, USA, 2004:275-282.
[17]  Schuon S, Theobalt C, Davis J, et al. LidarBoost:Depth superresolution for ToF 3D shape scanning [C]//<i>IEEE Conference on Computer Vision & Pattern Recognition</i>. Miami, USA, 2009:343-350.
[18]  Liu F, Shen C, Lin G. Deep convolutional neural fields for depth estimation from a single image[C]//<i>IEEE</i> <i>Conference on Computer Vision and Pattern Recognition</i>. Miami, USA, 2009:343-350.
[19]  noising algorithms, with a new one[J]. <i>Multiscale Modeling and Simulation</i>, 2005, 4(2):490-530.
[20]  Dong W, Zhang L, Shi G, et al. Nonlocally centralized sparse representation for image restoration[J]. <i>IEEE Transactions on Image Processing</i>, 2013, 22(4):1620-1630.
[21]  Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation [J]. <i>IEEE Transactions</i> <i>on Image Processing</i>, 2010, 19(11):2861-2873.
[22]  Liu Zhe, Zhang Yongliang, Hao Minhui, et al. A fast super resolution image reconstruction algorithm[J]. <i>Journal of Optoelectronics</i>?<i>Laser</i>, 2013, 24(2):372-377(in Chinese).
[23]  Freedman G, Fattal R. Image and video upscaling from local self-examples[J]. <i>ACM transactions on Graphics</i>, 2011, 30(2):474-484.
[24]  Li Y, Xue T, Sun L, et al. Joint example-based depth map super-resolution[C]//2012 <i>IEEE International Conference on Multimedia and Expo</i>. Melbourne, Australia, 2012:152-157.
[25]  Zhuo W, Salzmann M, He X, et al. Indoor scene structure analysis for single image depth estimation[C]// <i>Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition</i>. Boston, USA, 2015:614-622.
[26]  Glasner D, Bagon S, Irani M. Super-resolution from a single image[C]//2009 <i>IEEE</i> 12<i>th International Confevence on Computer Vision</i>. Kyoto, Japan, 2009:349-356.
[27]  Buades A, Coll B, Morel J M. A review of image de
[28]  Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. <i>IEEE Transactions on Image Processing</i>, 2007, 16(8):2080-2095.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133