全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

孔隙结构特征及发育程度对溶蚀岩体力学特性的影响
Effects of Pore Structure and Its Development Degree on Dissolution Rock Mechanical Characteristics

DOI: 10.11784/tdxbz201611016

Keywords: 溶蚀岩体,孔隙结构特征,岩溶发育程度,颗粒流,力学行为特性
dissolution rock
,pore structure characteristics,development degree of rock dissolution,particle flow code,mechanical behavior characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

溶蚀岩体具有明显的多相复合性质, 其细观溶蚀孔隙与微裂纹会对岩体宏观力学特性产生显著影响, 而针对孔隙结构特征对溶蚀岩体力学影响的研究并不多见.首先基于岩体溶蚀损伤演化机制研究的文献资料, 将溶蚀岩体孔隙结构分为虫洞型与蜂窝型, 采用颗粒流模拟手段, 建立具有不同孔隙结构特征的溶蚀岩体的颗粒流模型; 从细观力学角度分析孔隙结构特征及其发育程度对岩体力学行为特性的影响; 分析孔隙结构特征对溶蚀岩体受载损伤演化、岩体破坏模式及破坏机理的影响.数值模拟结果表明, 溶蚀岩体孔隙结构特征对岩体力学行为特性存在较大影响.对于具有不同孔隙结构特征的溶蚀岩体而言, 其力学特性对岩溶发育程度的敏感性不同.实际工程中仅以孔隙率这一宏观等效指标来评价溶蚀岩体并不完善, 应进一步考虑孔隙结构特征对岩体受载过程中力学特性的影响.
Pores and micro-cracks,which are distributed among dissolution rock mass,have great effects on mechanical characteristics via damage evolution. However,meso-mechanism during damage evolution in dissolution rock is still fuzzy thus far. First,pore structures in dissolution rock were classified into two categories: wormhole type and honeycomb type,and the numerical models with different pore structure characteristics were built based on particle flow code. Then,an effort was made to study the influences of pore structure characteristics and pore development degree on rock mechanical behavior characteristics. Furthermore,rock failure mode and failure mechanism were analyzed under different pore structure characteristics. Numerical simulation results show that pore structure characteristics have great effects on rock mechanical behavior characteristics,and mechanical characteristics of dissolution rocks with different pore structure characteristics shows different sensitivity. In practice,it is not enough to evaluate dissolution rocks by porosity alone and pore structure characteristics should also be taken into consideration for it has a profound impact on the mechanical characteristics of dissolution rock in loading process

References

[1]  Rohmer J, Allanic C, Bourgine B, et al. Improving our knowledge on the hydro-chemo-mechanical behaviour of fault zones in the context of CO<sub>2</sub> geological storage[J]. <i>Energy Procedia</i>, 2014, 63(1):3371-3378.
[2]  Kabera T. Pre-injection Characterization and Evaluation of CO<sub>2</sub> Sequestration Potential in the Qianjiang Depression Area, Jianghan Basin, China[D]. Wuhan:School of Environmental Studies, China University of Geosciences, 2011.
[3]  张社荣, 王超, 孙博. Bayes约束随机场下坝基溶蚀区随机模拟方法及其影响分析[J]. 岩土力学, 2013, 34(8):2337-2346.
[4]  Zhang Sherong, Wang Chao, Sun Bo. Stochastic simulation and influence analysis of dissolution dam foundation under Bayes constraint random field[J]. <i>Rock and Soil Mechanics</i>, 2013, 34(8):2337-2346(in Chinese).
[5]  Zhang Sherong, Yan Lei, Wang Chao. Evaluating adaptability to build dams on dissolution foundation system based on stochastic finite element method[J]. <i>Rock and Soil Mechanics</i>, 2012, 33(2):597-603(in Chinese).
[6]  吴林刚, 李秀生, 郭小波, 等. 马朗凹陷芦草沟组页岩油储层成岩演化与溶蚀孔隙形成机制[J]. 中国石油大学学报:自然科学版, 2012, 36(3):38-53.
[7]  Schmitt M, Fernandes C P, da Cunha Neto J A B, et al. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques[J]. <i>Marine and Petroleum Geology</i>, 2013, 39:138-149.
[8]  郭小波, 黄志龙, 柳波, 等. 马朗凹陷芦草沟组泥页岩储层微观孔隙特征及地质意义[J]. 西北大学学报:自然科学版, 2014, 44(1):88-95.
[9]  Guo Xiaobo, Huang Zhilong, Liu Bo, et al. Microscopic characteristics and geological significance of Lucaogou formation shale reservoir in Malang sag [J]. <i>Journal of Northwest University</i>:<i>Natural Science Edition</i>, 2014, 44(1):88-95(in Chinese).
[10]  Wei Hu, Sun Wei, Li Da, et al. Micro-pore structure characteristics and its influence on gas well performance of tight gas sand reservior in Ordos Basin[J]. <i>Journal of Northwest University</i>:<i>Natural Science Edition</i>, 2011, 41(5):869-875(in Chinese).
[11]  Rathnaweera T D, Ranjith P G, Perera M S A, et al. CO<sub>2</sub>-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin:An experimental study [J]. <i>Materials Science and Engineering</i>:<i>A</i>, 2015, 641:123-137.
[12]  Ranganathan P, van Hemert P, Rudolph E S J, et al. Numerical modeling of CO<sub>2</sub> mineralisation during storage in deep saline aquifers[J]. <i>Energy Procedia</i>, 2011, 4:4538-4545.
[13]  Detwiler R L, Glass R J, Bourcier W L. Experimental observations of fracture dissolution:The role of Peclet number on evolving aperture variability[J]. <i>Geophysical Research Letters</i>, 2003, 30(12):50-1-50-4.
[14]  Szymczak P, Ladd A J C. Wormhole formation in dissolving fractures[J]. <i>Journal of Geophysical Research</i>, 2009, 114:B06203-1-B06203-22.
[15]  Maria G R, Linda L, Josep M S, et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO<sub>2</sub>-rich sulfate solutions through fractured limestone samples[J]. <i>Chemical Geology</i>, 2015, 414:95-108.
[16]  Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. <i>International Journal of Rock Mechanics and Mining Sciences</i>, 2004, 41(8):1329-1364.
[17]  Xie H P, Liu J F, Ju Y, et al. Fractal property of spatial distribution of acoustic emissions during the failure process of bedded rock salt[J]. <i>International Journal of Rock Mechanics and Mining Sciences</i>, 2011, 48(8):1344-1351.
[18]  Zhang C D, Liang W G, Li Z G, et al. Observations of acoustic emission of three salt rocks under uniaxial compression[J]. <i>International Journal of Rock Mechanics and Mining Sciences</i>, 2015, 77:19-26.
[19]  Hektor E, Berntsson T. Reduction of greenhouse gases in integrated pulp and paper mills:Possibilities for CO<sub>2</sub> capture and storage[J]. <i>Clean Technologies and Environmental Policy</i>, 2009, 11(1):59-65.
[20]  魏虎, 孙卫, 李达, 等. 鄂尔多斯盆地致密砂岩气藏微观孔隙结构对气井生产的影响[J]. 西北大学学报:自然科学版, 2011, 41(5):869-875.
[21]  Hazzard J F, Young R P. Simulating acoustic emissions in bonded-particle models of rock[J]. <i>International Journal of Rock Mechanics and Mining Sciences</i>, 2000, 37(5):867-872.
[22]  Wu Lingang, Li Xiusheng, Guo Xiaobo, et al. Diagenetic evolution and formation mechanism of dissolved pore of shale oil reservoirs of Lucaogou formation in Malang sag[J]. <i>Journal of China University of Petroleum</i>, 2012, 36(3):38-53(in Chinese).
[23]  Kang Q, Chen L, Valocchi A J, et al. Pore-scale study of dissolution-induced changes in permeability and porosity of porous media[J]. <i>Journal of Hydrology</i>, 2014, 517:1049-1055.
[24]  Szymczak P, Ladd A J C. The initial stages of cave formation:Beyond the one-dimensional paradigm[J]. <i>Earth and Planetary Science Letters</i>, 2011, 301(3/4):424-432.
[25]  Elkhoury J E, Ameli P, Detwiler R L. Dissolution and deformation in fractured carbonates caused by flow of CO<sub>2</sub>-rich brine under reservoir conditions[J]. <i>International Journal of Greenhouse Gas Control</i>, 2013, 16:S203-S215.
[26]  Rathnaweera T D, Ranjith P G, Perera M S A. Salinity-dependent strength and stress-strain characteristics of reservoir rocks in deep saline aquifers:An experimental study[J]. <i>Fuel</i>, 2014, 122:1-11.
[27]  Cai M, Kaiser P K, Morioka H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. <i>International Journal of Rock Mechanics and Mining Sciences</i>, 2007, 44(4):550-564.
[28]  张社荣, 严磊, 王超. 基于随机有限元法的溶蚀坝基系统建坝适应性评价[J]. 岩土力学, 2012, 33(2):597-603.
[29]  Feng J, Cao J, Hu K, et al. Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic-carbonate sediments, northwestern Qaidam Basin, northwest China[J]. <i>Marine and Petroleum Geology</i>, 2013, 39(1):124-137.
[30]  Henares S, Caracciolo L, Cultrone G, et al. The role of diagenesis and depositional facies on pore system evolution in a Triassic outcrop analogue(SE Spain)[J]. <i>Marine and Petroleum Geology</i>, 2014, 51:136-151.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133